1
|
Tysnes OB and Storstein A: Epidemiology of
Parkinson's disease. J Neural Transm (Vienna). 124:901–905. 2017.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Schapira AH: Neurobiology and treatment of
Parkinson's disease. Trends Pharmacol Sci. 30:41–47. 2009.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Gao Q, Jiang T, Zhao HR, Wu L, Tian YY, Ou
Z, Zhang L, Pan Y, Lu J and Zhang YD: Activation of autophagy
contributes to the Angiotensin II-triggered apoptosis in a
dopaminergic neuronal cell line. Mol Neurobiol. 53:2911–2919. 2016.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Zhao HR, Jiang T, Tian YY, Gao Q, Li Z,
Pan Y, Wu L, Lu J and Zhang YD: Angiotensin II triggers apoptosis
via enhancement of NADPH Oxidase-dependent oxidative stress in a
dopaminergic neuronal cell line. Neurochem Res. 40:854–863. 2015.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Green DR and Llambi F: Cell death
signaling. Cold Spring Harb Perspect Biol. 7:pii: a0060802015.
View Article : Google Scholar
|
6
|
Ou Z, Jiang T, Gao Q, Tian YY, Zhou JS, Wu
L, Shi JQ and Zhang YD: Mitochondrial-dependent mechanisms are
involved in angiotensin II-induced apoptosis in dopaminergic
neurons. J Renin Angiotensin Aldosterone Syst. 17:pii2016.
View Article : Google Scholar
|
7
|
Schrepfer E and Scorrano L: Mitofusins,
from mitochondria to metabolism. Mol Cell. 61:683–694. 2016.
View Article : Google Scholar : PubMed/NCBI
|
8
|
de Brito OM and Scorrano L: Mitofusin 2: A
mitochondria-shaping protein with signaling roles beyond fusion.
Antioxid Redox Signal. 10:621–633. 2008. View Article : Google Scholar : PubMed/NCBI
|
9
|
Zorzano A, Hernández-Alvarez MI, Sebastián
D and Muñoz JP: Mitofusin 2 as a driver that controls energy
metabolism and insulin signaling. Antioxid Redox Signal.
22:1020–1031. 2015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Stuppia G, Rizzo F, Riboldi G, Del Bo R,
Nizzardo M, Simone C, Comi GP, Bresolin N and Corti S: MFN2-related
neuropathies: Clinical features, molecular pathogenesis and
therapeutic perspectives. J Neurol Sci. 356:7–18. 2015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Shi Y, Yi C, Li X, Wang J, Zhou F and Chen
X: Overexpression of Mitofusin2 decreased the reactive astrocytes
proliferation in vitro induced by oxygen-glucose
deprivation/reoxygenation. Neurosc Lett. 639:68–73. 2017.
View Article : Google Scholar
|
12
|
Wang X, Su B, Lee HG, Li X, Perry G, Smith
MA and Zhu X: Impaired balance of mitochondrial fission and fusion
in Alzheimer's disease. J Neurosci. 29:9090–9103. 2009. View Article : Google Scholar : PubMed/NCBI
|
13
|
Wu L, Luo N, Zhao HR, Gao Q, Lu J, Pan Y,
Shi JP, Tian YY and Zhang YD: Salubrinal protects against
rotenone-induced SH-SY5Y cell death via ATF4-parkin pathway. Brain
Res. 1549:52–62. 2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Jiang T, Tan L, Zhu XC, Zhang QQ, Cao L,
Tan MS, Gu LZ, Wang HF, Ding ZZ, Zhang YD and Yu JT: Upregulation
of TREM2 ameliorates neuropathology and rescues spatial cognitive
impairment in a transgenic mouse model of Alzheimer's disease.
Neuropsychopharmacology. 39:2949–2962. 2014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Lu J, Wu L, Jiang T, Wang Y, Zhao H, Gao
Q, Pan Y, Tian Y and Zhang Y: Angiotensin AT2 receptor stimulation
inhibits activation of NADPH oxidase and ameliorates oxidative
stress in rotenone model of Parkinson's disease in CATH.a cells.
Neurotoxicol Teratol. 47:16–24. 2015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Jiang T, Zhang YD, Chen Q, Gao Q, Zhu XC,
Zhou JS, Shi JQ, Lu H, Tan L and Yu JT: TREM2 modifies microglial
phenotype and provides neuroprotection in P301S tau transgenic
mice. Neuropharmacology. 105:196–206. 2016. View Article : Google Scholar : PubMed/NCBI
|
17
|
Jiang T, Zhang YD, Gao Q, Zhou JS, Zhu XC,
Lu H, Shi JQ, Tan L, Chen Q and Yu JT: TREM1 facilitates microglial
phagocytosis of amyloid beta. Acta Neuropathol. 132:667–683. 2016.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Johnson ME and Bobrovskaya L: An update on
the rotenone models of Parkinson's disease: Their ability to
reproduce the features of clinical disease and model
gene-environment interactions. Neurotoxicology. 46:101–116. 2015.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Bombelli F, Stojkovic T, Dubourg O,
Echaniz-Laguna A, Tardieu S, Larcher K, Amati-Bonneau P, Latour P,
Vignal O, Cazeneuve C, et al: Charcot-Marie-Tooth disease type 2A:
From typical to rare phenotypic and genotypic features. JAMA
Neurol. 71:1036–1042. 2014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Peng C, Rao W, Zhang L, Wang K, Hui H,
Wang L, Su N, Luo P, Hao YL, Tu Y, et al: Mitofusin 2 ameliorates
hypoxia-induced apoptosis via mitochondrial function and signaling
pathways. Int J Biochem Cell Biol. 69:29–40. 2015. View Article : Google Scholar : PubMed/NCBI
|
22
|
Park J, Choi H, Min JS, Kim B, Lee SR, Yun
JW, Choi MS, Chang KT and Lee DS: Loss of mitofusin 2 links
beta-amyloid-mediated mitochondrial fragmentation and Cdk5-induced
oxidative stress in neuron cells. J Neurochem. 132:687–702. 2015.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhao F, Wang W, Wang C, Siedlak SL,
Fujioka H, Tang B and Zhu X: Mfn2 protects dopaminergic neurons
exposed to paraquat both in vitro and in vivo: Implications for
idiopathic Parkinson's disease. Biochim Biophy Acta.
1863:1359–1370. 2017. View Article : Google Scholar
|