1
|
Al-Khindi T, Macdonald RL and Schweizer
TA: Cognitive and functional outcome after aneurysmal subarachnoid
hemorrhage. Stroke. 41:e519–e536. 2010. View Article : Google Scholar : PubMed/NCBI
|
2
|
Takata K, Sheng H, Borel CO, Laskowitz DT,
Warner DS and Lombard FW: Long-term cognitive dysfunction following
experimental subarachnoid hemorrhage: New perspectives. Exp Neurol.
213:336–344. 2008. View Article : Google Scholar : PubMed/NCBI
|
3
|
Egashira Y, Hua Y, Keep RF and Xi G: Acute
white matter injury after experimental subarachnoid hemorrhage:
Potential role of lipocalin 2. Stroke. 45:2141–2143. 2014.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Kummer TT, Magnoni S, Mac Donald CL,
Dikranian K, Milner E, Sorrell J, Conte V, Benetatos JJ, Zipfel GJ
and Brody DL: Experimental subarachnoid haemorrhage results in
multifocal axonal injury. Brain. 138:2608–2618. 2015. View Article : Google Scholar : PubMed/NCBI
|
5
|
Fern RF, Matute C and Stys PK: White
matter injury: Ischemic and nonischemic. Glia. 62:1780–1789. 2014.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Lee EB, Lee VM and Trojanowski JQ: Gains
or losses: Molecular mechanisms of TDP43-mediated
neurodegeneration. Nat Rev Neurosci. 13:38–50. 2011. View Article : Google Scholar : PubMed/NCBI
|
7
|
Schwab C, Arai T, Hasegawa M, Yu S and
McGeer PL: Colocalization of transactivation-responsive DNA-binding
protein 43 and huntingtin in inclusions of Huntington disease. J
Neuropathol Exp Neurol. 67:1159–1165. 2008. View Article : Google Scholar : PubMed/NCBI
|
8
|
Yokota O, Tsuchiya K, Arai T, Yagishita S,
Matsubara O, Mochizuki A, Tamaoka A, Kawamura M, Yoshida H, Terada
S, et al: Clinicopathological characterization of Pick's disease
versus frontotemporal lobar degeneration with
ubiquitin/TDP-43-positive inclusions. Acta Neuropathol.
117:429–444. 2009. View Article : Google Scholar : PubMed/NCBI
|
9
|
Onozato T, Nakahara A, Suzuki-Kouyama E,
Hineno A, Yasude T, Nakamura T, Yahikozawa H, Watanabe M, Kayanuma
K, Makishita H, et al: Axonal TDP-43 aggregates in sporadic
amyotrophic lateral sclerosis. Neuropathol Appl Neurobiol.
42:561–572. 2016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Ishiguro A, Kimura N, Watanabe Y, Watanabe
S and Ishihama A: TDP-43 binds and transports
G-quadruplex-containing mRNAs into neurites for local translation.
Genes Cells. 21:466–481. 2016. View Article : Google Scholar : PubMed/NCBI
|
11
|
Tripathi VB, Baskaran P, Shaw CE and
Guthrie S: Tar DNA-binding protein-43 (TDP-43) regulates axon
growth in vitro and in vivo. Neurobiol Dis. 65:25–34. 2014.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Herzog JJ, Deshpande M, Shapiro L, Rodal
AA and Paradis S: TDP-43 misexpression causes defects in dendritic
growth. Sci Rep. 7:156562017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Liu F, Hu Q, Li B, Manaenko A, Chen Y,
Tang J, Guo Z, Tang J and Zhang JH: Recombinant milk fat
globule-EGF factor-8 reduces oxidative stress via integrin
β٣/nuclear factor erythroid 2-related factor 2/heme oxygenase
pathway in subarachnoid hemorrhage rats. Stroke. 45:3691–3697.
2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Sugawara T, Ayer R, Jadhav V and Zhang JH:
A new grading system evaluating bleeding scale in filament
perforation subarachnoid hemorrhage rat model. J Neurosci Methods.
167:327–334. 2008. View Article : Google Scholar : PubMed/NCBI
|
15
|
Liu F, Chen Y, Hu Q, Li B, Tang J, He Y,
Guo Z, Feng H, Tang J and Zhang JH: MFGE8/Integrin β٣ pathway
alleviates apoptosis and inflammation in early brain injury after
subarachnoid hemorrhage in rats. Exp Neurol. 272:120–127. 2015.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Hu Q, Ma Q, Zhan Y, He Z, Tang J, Zhou C
and Zhang J: Isoflurane enhanced hemorrhagic transformation by
impairing antioxidant enzymes in hyperglycemic rats with middle
cerebral artery occlusion. Stroke. 42:1750–1756. 2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Ren M, Li K, Wang D, Guo J, Li J, Yang G,
Long X, Shen W, Hu R, Wang X and Zeng K: Neurofibromin regulates
seizure attacks in the rat pilocarpine-induced model of epilepsy.
Mol Neurobiol. 53:6069–6077. 2016. View Article : Google Scholar : PubMed/NCBI
|
18
|
Yan J, Manaenko A, Chen S, Klebe D, Ma Q,
Caner B, Fujii M, Zhou C and Zhang JH: Role of SCH79797 in
maintaining vascular integrity in rat model of subarachnoid
hemorrhage. Stroke. 44:1410–1417. 2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Yang Z, Lin F, Robertson CS and Wang KK:
Dual vulnerability of TDP-43 to calpain and caspase-3 proteolysis
after neurotoxic conditions and traumatic brain injury. J Cereb
Blood Flow Metab. 34:1444–1452. 2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Noto Y, Shibuya K, Sato Y, Kanai K, Misawa
S, Sawai S, Mori M, Uchiyama T, Isose S, Nasu S, et al: Elevated
CSF TDP-43 levels in amyotrophic lateral sclerosis: specificity,
sensitivity, and a possible prognostic value. Amyotroph Lateral
Scler. 12:140–143. 2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Leal-Lasarte MM, Franco JM,
Labrador-Garrido A, Pozo D and Roodveldt C: Extracellular TDP-43
aggregates target MAPK/MAK/MRK overlapping kinase (MOK) and trigger
caspase-3/IL-18 signaling in microglia. FASEB J. 31:2797–2816.
2017. View Article : Google Scholar : PubMed/NCBI
|
22
|
Iguchi Y, Eid L, Parent M, Soucy G, Bareil
C, Riku Y, Kawai K, Takagi S, Yoshida M and Katsuno M: Exosome
secretion is a key pathway for clearance of pathological TDP-43.
Brain. 139:3187–3201. 2016. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zondler L, Feiler MS, Freischmidt A, Ruf
WP, Ludolph AC, Danzer KM and Weishaupt JH: Impaired activation of
ALS monocytes by exosomes. Immunol Cell Biol. 95:207–214. 2017.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Neumann M, Sampathu DM, Kwong LK, Truax
AC, Micsenyi MC, Chou TT, Bruce J, Schuck T, Grossman M, Clark CM,
et al: Ubiquitinated TDP-43 in frontotemporal lobar degeneration
and amyotrophic lateral sclerosis. Science. 314:130–133. 2006.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Correia AS, Patel P, Dutta K and Julien
JP: Inflammation Induces TDP-43 mislocalization and aggregation.
PLoS One. 10:E01402482015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Lucke-Wold BP, Turner RC, Logsdon AF,
Bailes JE, Huber JD and Rosen CL: Linking traumatic brain injury to
chronic traumatic encephalopathy: Identification of potential
mechanisms leading to neurofibrillary tangle development. J
Neurotrauma. 31:1129–1138. 2014. View Article : Google Scholar : PubMed/NCBI
|
27
|
Dewey CM, Cenik B, Sephton CF, Johnson BA,
Herz J and Yu G: TDP-43 aggregation in neurodegeneration: Are
stress granules the key? Brain Res. 1462:16–25. 2012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Chen HJ, Mitchell JC, Novoselov S, Miller
J, Nishimura AL, Scotter EL, Vance CA, Cheetham ME and Shaw CE: The
heat shock response plays an important role in TDP-43 clearance:
Evidence for dysfunction in amyotrophic lateral sclerosis. Brain.
139:1417–1432. 2016. View Article : Google Scholar : PubMed/NCBI
|