1
|
Abdi R, Fiorina P, Adra CN, Atkinson M and
Sayegh MH: Immunomodulation by mesenchymal stem cells: A potential
therapeutic strategy for type 1 diabetes. Diabetes. 57:1759–1767.
2008. View Article : Google Scholar : PubMed/NCBI
|
2
|
Shen H: Stricter standards sought to curb
stem-cell confusion. Nature. 499:3892013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Miura Y, Yoshioka S, Yao H, Takaori-Kondo
A, Maekawa T and Ichinohe T: Chimerism of bone marrow mesenchymal
stem/stromal cells in allogeneic hematopoietic cell
transplantation: Is it clinically relevant? Chimerism. 4:78–83.
2013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Fraser JK, Wulur I, Alfonso Z and Hedrick
MH: Fat tissue: An underappreciated source of stem cells for
biotechnology. Trends Biotechnol. 24:150–154. 2006. View Article : Google Scholar : PubMed/NCBI
|
5
|
Melief SM, Zwaginga JJ, Fibbe WE and
Roelofs H: Adipose tissue-derived multipotent stromal cells have a
higher immunomodulatory capacity than their bone marrow-derived
counterparts. Stem Cells Transl Med. 2:455–463. 2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Gimble JM, Katz AJ and Bunnell BA:
Adipose-derived stem cells for regenerative medicine. Circ Res.
100:1249–1260. 2007. View Article : Google Scholar : PubMed/NCBI
|
7
|
Ning H, Yang F, Jiang M, Hu L, Feng K,
Zhang J, Yu Z, Li B, Xu C, Li Y, et al: The correlation between
cotransplantation of mesenchymal stem cells and higher recurrence
rate in hematologic malignancy patients: Outcome of a pilot
clinical study. Leukemia. 22:593–599. 2008. View Article : Google Scholar : PubMed/NCBI
|
8
|
Yañez R, Lamana ML, García-Castro J,
Colmenero I, Ramírez M and Bueren JA: Adipose tissue-derived
mesenchymal stem cells have in vivo immunosuppressive properties
applicable for the control of the graft-versus-host disease. Stem
Cells. 24:2582–2591. 2006. View Article : Google Scholar : PubMed/NCBI
|
9
|
Liang Y, Ma S, Zhang Y, Wang Y, Cheng Q,
Wu Y, Jin Y, Zheng D, Wu D and Liu H: IL-1β and TLR4 signaling are
involved in the aggravated murine acute graft-versus-host disease
caused by delayed bortezomib administration. J Immunol.
192:1277–1285. 2014. View Article : Google Scholar : PubMed/NCBI
|
10
|
McDonald GB, Shulman HM, Sullivan KM and
Spencer GD: Intestinal and hepatic complications of human bone
marrow transplantation. Part I. Gastroenterology. 90:460–477. 1986.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Deeg HJ and Antin JH: The clinical
spectrum of acute graft-versus-host disease. Semin Hematol.
43:24–31. 2006. View Article : Google Scholar : PubMed/NCBI
|
12
|
McDonald GB: Hepatobiliary complications
of hematopoietic cell transplantation, 40 years on. Hepatology.
51:1450–1460. 2010. View Article : Google Scholar : PubMed/NCBI
|
13
|
Tse WT, Pendleton JD, Beyer WM, Egalka MC
and Guinan EC: Suppression of allogeneic T-cell proliferation by
human marrow stromal cells: Implications in transplantation.
Transplantation. 75:389–397. 2003. View Article : Google Scholar : PubMed/NCBI
|
14
|
Le Blanc K, Rasmusson I, Sundberg B,
Götherström C, Hassan M, Uzunel M and Ringdén O: Treatment of
severe acute graft-versus-host disease with third party
haploidentical mesenchymal stem cells. Lancet. 363:1439–1441. 2004.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Choi SW and Reddy P: Current and emerging
strategies for the prevention of graft-versus-host disease. Nat Rev
Clin Oncol. 11:536–547. 2014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Nagaya R, Mizuno-Kamiya M, Takayama E,
Kawaki H, Onoe I, Tanabe T, Nagahara K and Kondoh N: Mechanisms of
the immunosuppressive effects of mouse adipose tissue-derived
mesenchymal stromal cells on mouse alloreactively stimulated spleen
cells. Exp Ther Med. 7:17–22. 2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Masuda J, Takayama E, Strober W, Satoh A,
Morimoto Y, Honjo Y, Ichinohe T, Tokuno SI, Ishizuka T, Nakata T,
et al: Tumor growth limited to subcutaneous site vs tumor growth in
pulmonary site exhibit differential effects on systemic immunities.
Oncol Rep. 38:449–455. 2017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Yu J, Du W, Yan F, Wang Y, Li H, Cao S, Yu
W, Shen C, Liu J and Ren X: Myeloid-derived suppressor cells
suppress antitumor immune responses through IDO expression and
correlate with lymph node metastasis in patients with breast
cancer. J Immunol. 190:3783–3797. 2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Lim JY, Park MJ, Im KI, Kim N, Jeon EJ,
Kim EJ, Cho ML and Cho SG: Combination cell therapy using
mesenchymal stem cells and regulatory T-cells provides a
synergistic immunomodulatory effect associated with reciprocal
regulation of TH1/TH2 and th17/treg cells in a murine acute
graft-versus-host disease model. Cell Transplant. 23:703–714. 2014.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Takayama E, Seki S, Ohkawa T, Ami K, Habu
Y, Yamaguchi T, Tadakuma T and Hiraide H: Mouse CD8+
CD122+ T cells with intermediate TCR increasing with age
provide a source of early IFN-gamma production. J Immunol.
164:5652–5658. 2000. View Article : Google Scholar : PubMed/NCBI
|
21
|
Favier B, LeMaoult J and Carosella ED:
Functions of HLA-G in the immune system. Tissue Antigens. 69 Suppl
1:S150–S152. 2007. View Article : Google Scholar
|
22
|
Nasef A, Mathieu N, Chapel A, Frick J,
François S, Mazurier C, Boutarfa A, Bouchet S, Gorin NC, Thierry D
and Fouillard L: Immunosuppressive effects of mesenchymal stem
cells: Involvement of HLA-G. Transplantation. 84:231–237. 2007.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Melo-Lima BL, Evangelista AF, de Magalhães
DA, Passos GA, Moreau P and Donadi EA: Differential transcript
profiles of MHC class Ib(Qa-1, Qa-2, and Qa-10) and Aire genes
during the ontogeny of thymus and other tissues. J Immunol Res.
2014:1592472014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Shiroishi M, Kuroki K, Rasubala L, Tsumoto
K, Kumagai I, Kurimoto E, Kato K, Kohda D and Maenaka K: Structural
basis for recognition of the nonclassical MHC molecule HLA-G by the
leukocyte Ig-like receptor B2 (LILRB2/LIR2/ILT4/CD85d). Proc Natl
Acad Sci USA. 103:16412–16417. 2006. View Article : Google Scholar : PubMed/NCBI
|
25
|
Carosella ED, Gregori S and LeMaoult J:
The tolerogenic interplay(s) among HLA-G, myeloid APCs, and
regulatory cells. Blood. 118:6499–6505. 2011. View Article : Google Scholar : PubMed/NCBI
|
26
|
Ulker N, Lewis KD, Hood LE and Stroynowski
I: Activated T cells transcribe an alternatively spliced mRNA
encoding a soluble form of Qa-2 antigen. EMBO J. 9:3839–3847. 1990.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Comiskey M, Goldstein CY, De Fazio SR,
Mammolenti M, Newmark JA and Warner CM: Evidence that HLA-G is the
functional homolog of mouse Qa-2, the Ped gene product. Hum
Immunol. 64:999–1004. 2003. View Article : Google Scholar : PubMed/NCBI
|
28
|
Ludwig AK and Giebel B: Exosomes: Small
vesicles participating in intercellular communication. Int J
Biochem Cell Biol. 44:11–15. 2012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Alegre E, Rebmann V, Lemaoult J, Rodriguez
C, Horn PA, Díaz-Lagares A, Echeveste JI and González A: In vivo
identification of an HLA-G complex as ubiquitinated protein
circulating in exosomes. Eur J Immunol. 43:1933–1991. 2013.
View Article : Google Scholar : PubMed/NCBI
|