Human umbilical cord‑derived mesenchymal stem cells ameliorate the enteropathy of food allergies in mice
- Authors:
- Nannan Yan
- Jie Xu
- Chuanxiang Zhao
- Yi Wu
- Fengwei Gao
- Ci Li
- Wenhui Zhou
- Tengfei Xiao
- Xiaoming Zhou
- Qixiang Shao
- Sheng Xia
-
Affiliations: Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China, Department of Pathology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China - Published online on: September 19, 2018 https://doi.org/10.3892/etm.2018.6763
- Pages: 4445-4456
-
Copyright: © Yan et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Yue D, Ciccolini A, Avilla E and Waserman S: Food allergy and anaphylaxis. J Asthma Allergy. 11:111–120. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sicherer SH and Leung DY: Advances in allergic skin disease, anaphylaxis, and hypersensitivity reactions to foods, drugs, and insects in 2010. J Allergy Clin Immunol. 127:326–335. 2011. View Article : Google Scholar : PubMed/NCBI | |
Parrish CP and Kim H: Food-induced anaphylaxis: An update. Curr Allergy Asthma Rep. 18:412018. View Article : Google Scholar : PubMed/NCBI | |
Hill DA, Grundmeier RW, Ram G and Spergel JM: The epidemiologic characteristics of healthcare provider-diagnosed eczema, asthma, allergic rhinitis, and food allergy in children: A retrospective cohort study. BMC Pediatr. 16:1332016. View Article : Google Scholar : PubMed/NCBI | |
Koplin JJ, Mills EN and Allen KJ: Epidemiology of food allergy and food-induced anaphylaxis: Is there really a western world epidemic? Curr Opin Allergy Clin Immunol. 15:409–416. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yang Z, Zheng W, Yung E, Zhong N, Wong GW and Li J: Frequency of food group consumption and risk of allergic disease and sensitization in schoolchildren in urban and rural china. Clin Exp Allergy. 45:1823–1832. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mullins RJ, Dear KB and Tang ML: Time trends in Australian hospital anaphylaxis admissions in 1998–1999 to 2011–2012. J Allergy Clin Immunol. 136:367–375. 2015. View Article : Google Scholar : PubMed/NCBI | |
Turner PJ, Gowland MH, Sharma V, Ierodiakonou D, Harper N, Garcez T, Pumphrey R and Boyle RJ: Increase in anaphylaxis-related hospitalizations but no increase in fatalities: An analysis of United Kingdom national anaphylaxis data, 1992–2012. J Allergy Clin Immunol. 135:956–963, e951. 2015. View Article : Google Scholar : PubMed/NCBI | |
Stone KD, Prussin C and Metcalfe DD: IgE, mast cells, basophils, and eosinophils. J Allergy Clin Immunol. 125 Suppl 2:S73–S80. 2010. View Article : Google Scholar : PubMed/NCBI | |
Spergel JM: Nonimmunoglobulin e-mediated immune reactions to foods. Allergy Asthma Clin Immunol. 2:78–85. 2006. View Article : Google Scholar : PubMed/NCBI | |
Castro-Sanchez P and Martin-Villa JM: Gut immune system and oral tolerance. Br J Nutr. 109 Suppl 2:S3–S11. 2013. View Article : Google Scholar : PubMed/NCBI | |
Coombes JL, Siddiqui KR, Arancibia-Carcamo CV, Hall J, Sun CM, Belkaid Y and Powrie F: A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med. 204:1757–1764. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bakdash G, Vogelpoel LT, van Capel TM, Kapsenberg ML and de Jong EC: Retinoic acid primes human dendritic cells to induce gut-homing, IL-10-producing regulatory T cells. Mucosal Immunol. 8:265–278. 2015. View Article : Google Scholar : PubMed/NCBI | |
Syed A, Garcia MA, Lyu SC, Bucayu R, Kohli A, Ishida S, Berglund JP, Tsai M, Maecker H, O'Riordan G, et al: Peanut oral immunotherapy results in increased antigen-induced regulatory T-cell function and hypomethylation of forkhead box protein 3 (FOXP3). J Allergy Clin Immunol. 133:500–510. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang YH: Developing food allergy: A potential immunologic pathway linking skin barrier to gut. F1000Res. 5:F10002016. View Article : Google Scholar | |
Rivas Noval M, Burton OT, Wise P, Charbonnier LM, Georgiev P, Oettgen HC, Rachid R and Chatila TA: Regulatory T cell reprogramming toward a Th2-cell-like lineage impairs oral tolerance and promotes food allergy. Immunity. 42:512–523. 2015. View Article : Google Scholar : PubMed/NCBI | |
Turcanu V, Maleki SJ and Lack G: Characterization of lymphocyte responses to peanuts in normal children, peanut-allergic children, and allergic children who acquired tolerance to peanuts. J Clin Invest. 111:1065–1072. 2003. View Article : Google Scholar : PubMed/NCBI | |
Nakajima-Adachi H, Ebihara A, Kikuchi A, Ishida T, Sasaki K, Hirano K, Watanabe H, Asai K, Takahashi Y, Kanamori Y, et al: Food antigen causes TH2-dependent enteropathy followed by tissue repair in T-cell receptor transgenic mice. J Allergy Clin Immunol. 117:1125–1132. 2006. View Article : Google Scholar : PubMed/NCBI | |
Friedenstein AJ, Petrakova KV, Kurolesova AI and Frolova GP: Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation. 6:230–247. 1968. View Article : Google Scholar : PubMed/NCBI | |
Bernardo ME, Locatelli F and Fibbe WE: Mesenchymal stromal cells. Ann N Y Acad Sci. 1176:101–117. 2009. View Article : Google Scholar : PubMed/NCBI | |
Cho KS, Park MK, Kang SA, Park HY, Hong SL, Park HK, Yu HS and Roh HJ: Adipose-derived stem cells ameliorate allergic airway inflammation by inducing regulatory T cells in a mouse model of asthma. Mediators Inflamm. 2014:4364762014. View Article : Google Scholar : PubMed/NCBI | |
de Aguiar CF, Castoldi A, Andrade-Oliveira V, Ignacio A, da Cunha FF, Felizardo RJF, Bassi ÊJ, Câmara NOS and de Almeida DC: Mesenchymal stromal cells modulate gut inflammation in experimental colitis. Inflammopharmacology. 26:251–260. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ryan JM, Barry FP, Murphy JM and Mahon BP: Mesenchymal stem cells avoid allogeneic rejection. J Inflamm (Lond). 2:82005. View Article : Google Scholar : PubMed/NCBI | |
Fujii S, Miura Y, Fujishiro A, Shindo T, Shimazu Y, Hirai H, Tahara H, Takaori-Kondo A, Ichinohe T and Maekawa T: Graft-versus-host disease amelioration by human bone marrow mesenchymal stromal/stem cell-derived extracellular vesicles is associated with peripheral preservation of naive t cell populations. Stem Cells. 36:434–445. 2018. View Article : Google Scholar : PubMed/NCBI | |
Uccelli A, Moretta L and Pistoia V: Mesenchymal stem cells in health and disease. Nat Rev Immunol. 8:726–736. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ren G, Zhang L, Zhao X, Xu G, Zhang Y, Roberts AI, Zhao RC and Shi Y: Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell. 2:141–150. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ghannam S, Pene J, Moquet-Torcy G, Jorgensen C and Yssel H: Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype. J Immunol. 185:302–312. 2010. View Article : Google Scholar : PubMed/NCBI | |
Beyth S, Borovsky Z, Mevorach D, Liebergall M, Gazit Z, Aslan H, Galun E and Rachmilewitz J: Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood. 105:2214–2219. 2005. View Article : Google Scholar : PubMed/NCBI | |
Spaggiari GM, Abdelrazik H, Becchetti F and Moretta L: MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: Central role of MSC-derived prostaglandin E2. Blood. 113:6576–6583. 2009. View Article : Google Scholar : PubMed/NCBI | |
Li T, Xia M, Gao Y, Chen Y and Xu Y: Human umbilical cord mesenchymal stem cells: An overview of their potential in cell-based therapy. Expert Opin Biol Ther. 15:1293–1306. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li T, Yan Y, Wang B, Qian H, Zhang X, Shen L, Wang M, Zhou Y, Zhu W, Li W and Xu W: Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells Dev. 22:845–854. 2013. View Article : Google Scholar : PubMed/NCBI | |
Weiss ML, Anderson C, Medicetty S, Seshareddy KB, Weiss RJ, VanderWerff I, Troyer D and McIntosh KR: Immune properties of human umbilical cord Wharton's jelly-derived cells. Stem Cells. 26:2865–2874. 2008. View Article : Google Scholar : PubMed/NCBI | |
Xie Z, Hao H, Tong C, Cheng Y, Liu J, Pang Y, Si Y, Guo Y, Zang L, Mu Y and Han W: Human umbilical cord-derived mesenchymal stem cells elicit macrophages into an anti-inflammatory phenotype to alleviate insulin resistance in type 2 diabetic rats. Stem Cells. 34:627–639. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kim HS, Shin TH, Lee BC, Yu KR, Seo Y, Lee S, Seo MS, Hong IS, Choi SW, Seo KW, et al: Human umbilical cord blood mesenchymal stem cells reduce colitis in mice by activating NOD2 signaling to COX2. Gastroenterology. 145(1392–1403): e1391–e1398. 2013. | |
Sun L, Wang D, Liang J, Zhang H, Feng X, Wang H, Hua B, Liu B, Ye S, Hu X, et al: Umbilical cord mesenchymal stem cell transplantation in severe and refractory systemic lupus erythematosus. Arthritis Rheum. 62:2467–2475. 2010. View Article : Google Scholar : PubMed/NCBI | |
Qiao C, Xu W, Zhu W, Hu J, Qian H, Yin Q, Jiang R, Yan Y, Mao F, Yang H, et al: Human mesenchymal stem cells isolated from the umbilical cord. Cell Biol Int. 32:8–15. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yen BL, Huang HI, Chien CC, Jui HY, Ko BS, Yao M, Shun CT, Yen ML, Lee MC and Chen YC: Isolation of multipotent cells from human term placenta. Stem Cells. 23:3–9. 2005. View Article : Google Scholar : PubMed/NCBI | |
Paula-Silva J, Santiago AF, Oliveira RP, Rosa ML, Carvalho CR, Amaral JF and Faria AM: Effect of a protein-free diet in the development of food allergy and oral tolerance in BALB/c mice. Br J Nutr. 113:935–943. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kay AG, Long G, Tyler G, Stefan A, Broadfoot SJ, Piccinini AM, Middleton J and Kehoe O: Mesenchymal stem cell-conditioned medium reduces disease severity and immune responses in inflammatory arthritis. Sci Rep. 7:180192017. View Article : Google Scholar : PubMed/NCBI | |
Pouya S, Heidari M, Baghaei K, Aghdaei Asadzadeh H, Moradi A, Namaki S, Zali MR and Hashemi SM: Study the effects of mesenchymal stem cell conditioned medium injection in mouse model of acute colitis. Int Immunopharmacol. 54:86–94. 2018. View Article : Google Scholar : PubMed/NCBI | |
Nagata Y, Yamamoto T, Hayashi M, Hayashi S and Kadowaki M: Improvement of therapeutic efficacy of oral immunotherapy in combination with regulatory T cell-inducer kakkonto in a murine food allergy model. PLoS One. 12:e01705772017. View Article : Google Scholar : PubMed/NCBI | |
Cheng L, Jin H, Qiang Y, Wu S, Yan C, Han M, Xiao T, Yan N, An H, Zhou X, et al: High fat diet exacerbates dextran sulfate sodium induced colitis through disturbing mucosal dendritic cell homeostasis. Int Immunopharmacol. 40:1–10. 2016. View Article : Google Scholar : PubMed/NCBI | |
Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI | |
Parada AE, Needham DM and Fuhrman JA: Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 18:1403–1414. 2016. View Article : Google Scholar : PubMed/NCBI | |
Metcalf JL, Xu ZZ, Weiss S, Lax S, Van Treuren W, Hyde ER, Song SJ, Amir A, Larsen P, Sangwan N, et al: Microbial community assembly and metabolic function during mammalian corpse decomposition. Science. 351:158–162. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ravussin Y, Koren O, Spor A, LeDuc C, Gutman R, Stombaugh J, Knight R, Ley RE and Leibel RL: Responses of gut microbiota to diet composition and weight loss in lean and obese mice. Obesity (Silver Spring). 20:738–747. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lindner U, Kramer J, Rohwedel J and Schlenke P: Mesenchymal stem or stromal cells: Toward a better understanding of their biology? Transfus Med Hemother. 37:75–83. 2010. View Article : Google Scholar : PubMed/NCBI | |
Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop Dj and Horwitz E: Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy. 8:315–317. 2006. View Article : Google Scholar : PubMed/NCBI | |
Gazit Z, Pelled G, Sheyn D, Kimelman N and Gazit D: Mesenchymal Stem CellsEssentials of Stem Cell Biology (third Edition). Lanza R and Atala A: Academic Press; Boston: pp. 255–266. 2014, View Article : Google Scholar | |
van Halteren AG, van der Cammen MJ, Biewenga J, Savelkoul HF and Kraal G: IgE and mast cell response on intestinal allergen exposure: A murine model to study the onset of food allergy. J Allergy Clin Immunol. 99:94–99. 1997. View Article : Google Scholar : PubMed/NCBI | |
Sjodin Simonyte K, Vidman L, Ryden P and West CE: Emerging evidence of the role of gut microbiota in the development of allergic diseases. Curr Opin Allergy Clin Immunol. 16:390–395. 2016. View Article : Google Scholar : PubMed/NCBI | |
Vital M, Howe AC and Tiedje JM: Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data. MBio. 5:e008892014. View Article : Google Scholar : PubMed/NCBI | |
Nemeth K, Keane-Myers A, Brown JM, Metcalfe DD, Gorham JD, Bundoc VG, Hodges MG, Jelinek I, Madala S, Karpati S and Mezey E: Bone marrow stromal cells use TGF-beta to suppress allergic responses in a mouse model of ragweed-induced asthma. Proc Natl Acad Sci USA. 107:5652–5657. 2010. View Article : Google Scholar : PubMed/NCBI | |
Majore I, Moretti P, Stahl F, Hass R and Kasper C: Growth and differentiation properties of mesenchymal stromal cell populations derived from whole human umbilical cord. Stem Cell Rev. 7:17–31. 2011. View Article : Google Scholar : PubMed/NCBI | |
Phillips CD, Wongsaisri P, Htut T and Grossman T: Purified umbilical cord derived mesenchymal stem cell treatment in a case of systemic lupus erythematosus. Clin Transl Med. 6:312017. View Article : Google Scholar : PubMed/NCBI | |
Robinson AM, Sakkal S, Park A, Jovanovska V, Payne N, Carbone SE, Miller S, Bornstein JC, Bernard C, Boyd R and Nurgali K: Mesenchymal stem cells and conditioned medium avert enteric neuropathy and colon dysfunction in guinea pig TNBS-induced colitis. Am J Physiol Gastrointest Liver Physiol. 307:G1115–G1129. 2014. View Article : Google Scholar : PubMed/NCBI | |
Nowak-Wegrzyn A and Sampson HA: Future therapies for food allergies. J Allergy Clin Immunol. 127:558–573; quiz 574–555. 2011. View Article : Google Scholar : PubMed/NCBI | |
Miyagawa I, Nakayamada S, Nakano K, Yamagata K, Sakata K, Yamaoka K and Tanaka Y: Induction of regulatory T cells and its regulation with insulin-like growth factor/insulin-like growth factor binding protein-4 by human mesenchymal stem cells. J Immunol. 199:1616–1625. 2017. View Article : Google Scholar : PubMed/NCBI | |
Rubin BK: Secretion properties, clearance, and therapy in airway disease. Transl Respir Med. 2:62014. View Article : Google Scholar : PubMed/NCBI | |
Lambrecht BN and Hammad H: The immunology of asthma. Nat Immunol. 16:45–56. 2015. View Article : Google Scholar : PubMed/NCBI | |
Xia W, Bai J, Wu X, Wei Y, Feng S, Li L, Zhang J, Xiong G, Fan Y, Shi J and Li H: Interleukin-17A promotes MUC5AC expression and goblet cell hyperplasia in nasal polyps via the Act1-mediated pathway. PLoS One. 9:e989152014. View Article : Google Scholar : PubMed/NCBI | |
Kuperman DA and Schleimer RP: Interleukin-4, interleukin-13, signal transducer and activator of transcription factor 6, and allergic asthma. Curr Mol Med. 8:384–392. 2008. View Article : Google Scholar : PubMed/NCBI | |
Dock-Nascimento DB, Junqueira K and Aguilar-Nascimento JE: Rapid restoration of colonic goblet cells induced by a hydrolyzed diet containing probiotics in experimental malnutrition. Acta Cir Bras. 1 Suppl 22:S72–S76. 2007. View Article : Google Scholar | |
McDole JR, Wheeler LW, McDonald KG, Wang B, Konjufca V, Knoop KA, Newberry RD and Miller MJ: Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature. 483:345–349. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yamaki K and Yoshino S: Remission of food allergy by the Janus kinase inhibitor ruxolitinib in mice. Int Immunopharmacol. 18:217–224. 2014. View Article : Google Scholar : PubMed/NCBI | |
Clooney AG, Fouhy F, Sleator RD, O'Driscoll A, Stanton C, Cotter PD and Claesson MJ: Comparing apples and oranges?: Next generation sequencing and its impact on microbiome analysis. PLoS One. 11:e01480282016. View Article : Google Scholar : PubMed/NCBI | |
Arrieta MC, Stiemsma LT, Dimitriu PA, Thorson L, Russell S, Yurist-Doutsch S, Kuzeljevic B, Gold MJ, Britton HM and Lefebvre DL: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci Transl Med. 7:307ra1522015. View Article : Google Scholar : PubMed/NCBI | |
Yamashiro Y: Gut microbiota in health and disease. Ann Nutr Metab. 71:242–246. 2017. View Article : Google Scholar : PubMed/NCBI | |
Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, Nakanishi Y, Uetake C, Kato K, Kato T, et al: Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 504:446–450. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bibbo S, Ianiro G, Giorgio V, Scaldaferri F, Masucci L, Gasbarrini A and Cammarota G: The role of diet on gut microbiota composition. Eur Rev Med Pharmacol Sci. 20:4742–4749. 2016.PubMed/NCBI | |
Soontararak S, Chow L, Johnson V, Coy J, Wheat W, Regan D and Dow S: Mesenchymal stem cells (MSC) derived from induced pluripotent stem cells (iPSC) equivalent to adipose-derived MSC in promoting intestinal healing and microbiome normalization in mouse inflammatory bowel disease model. Stem Cells Transl Med. 7:456–467. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hurez V, Dao V, Liu A, Pandeswara S, Gelfond J, Sun L, Bergman M, Orihuela CJ, Galvan V, Padrón Á, et al: Chronic mTOR inhibition in mice with rapamycin alters T, B, myeloid, and innate lymphoid cells and gut flora and prolongs life of immune-deficient mice. Aging Cell. 14:945–956. 2015. View Article : Google Scholar : PubMed/NCBI | |
Henderson AL, Brand MW, Darling RJ, Maas KJ, Detzel CJ, Hostetter J, Wannemuehler MJ and Weaver EM: Attenuation of colitis by serum-derived bovine immunoglobulin/protein isolate in a defined microbiota mouse model. Dig Dis Sci. 60:3293–3303. 2015. View Article : Google Scholar : PubMed/NCBI | |
Carbonnel F, Soularue E, Coutzac C, Chaput N, Mateus C, Lepage P and Robert C: Inflammatory bowel disease and cancer response due to anti-CTLA-4: Is it in the flora? Semin Immunopathol. 39:327–331. 2017. View Article : Google Scholar : PubMed/NCBI |