1
|
Nehrer S, Chiari C, Domayer S, Barkay H
and Yayon A: Results of chondrocyte implantation with a
fibrin-hyaluronan matrix: A preliminary study. Clin Orthop Relat
Res. 466:1849–1855. 2008. View Article : Google Scholar : PubMed/NCBI
|
2
|
Steadman JR, Rodkey WG and Rodrigo JJ:
Microfracture: Surgical technique and rehabilitation to treat
chondral defects. Clin Orthop Relat Re S362-S369. 2001. View Article : Google Scholar
|
3
|
Bittberg M: Articular cartilage repair: An
update on different clinical repair methods. Ortop Traumatol
Rehabil. 3:235–243. 2001.PubMed/NCBI
|
4
|
Mendicino RW, Catanzariti AR and Hallivis
R: Mosaicplasty for the treatment of osteochondral defects of the
ankle joint. Clin Podiatr Med Surg. 18:495–513. 2001.PubMed/NCBI
|
5
|
Bentley G, Biant LC, Carrington RW, Akmal
M, Goldberg A, Williams AM, Skinner JA and Pringle J: A
prospective, randomised comparison of autologous chondrocyte
implantation versus mosaicplasty for osteochondral defects in the
knee. J Bone Joint Surg Br. 85:223–230. 2003. View Article : Google Scholar : PubMed/NCBI
|
6
|
Brittberg M, Tallheden T, Sjogren-Jansson
B, Lindahl A and Peterson L: Autologous chondrocytes used for
articular cartilage repair: An update. Clin Orthop Relat Res. 391
Suppl:S337–S348. 2001. View Article : Google Scholar : PubMed/NCBI
|
7
|
Hunziker EB: Articular cartilage repair:
Basic science and clinical progress. A review of the current status
and prospects. Osteoarthritis Cartilage. 10:432–463. 2002.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Hangody L, Rathonyi GK, Duska Z,
Vasarhelyi G, Fules P and Módis L: Autologous osteochondral
mosaicplasty. Surgical technique. J Bone Joint Surg Am. 86-A Suppl
1:S65–S72. 2004. View Article : Google Scholar
|
9
|
Ozturk A, Ozdemir MR and Ozkan Y:
Osteochondral autografting (mosaicplasty) in grade IV cartilage
defects in the knee joint: 2- to 7-year results. Int Orthop.
30:200–204. 2006. View Article : Google Scholar : PubMed/NCBI
|
10
|
Haklar U, Tuzuner T, Kocaoglu B and Guven
O: Mosaicplasty technique in the treatment of osteochondral lesions
of the knee. Acta Orthop Traumatol Turc. 42:344–349. 2008.(In
Turkish). View Article : Google Scholar : PubMed/NCBI
|
11
|
Rose T, Craatz S, Hepp P, Raczynski C,
Weiss J, Josten C and Lill H: The autologous osteochondral
transplantation of the knee: Clinical results, radiographic
findings and histological aspects. Arch Orthop Trauma Surg.
125:628–637. 2005. View Article : Google Scholar : PubMed/NCBI
|
12
|
Hangody L, Vasarhelyi G, Hangody LR,
Sukosd Z, Tibay G, Bartha L and Bodó G: Autologous osteochondral
grafting-technique and long-term results. Injury. 39 Suppl
1:S32–S39. 2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Emre TY, Ege T, Kose O, Demircioglu Tekdos
D, Seyhan B and Uzun M: Factors affecting the outcome of
osteochondral autografting (mosaicplasty) in articular cartilage
defects of the knee joint: Retrospective analysis of 152 cases.
Arch Orthop Trauma Surg. 133:531–536. 2013. View Article : Google Scholar : PubMed/NCBI
|
14
|
Hangody L, Dobos J, Balo E, Panics G,
Hangody LR and Berkes I: Clinical experiences with autologous
osteochondral mosaicplasty in an athletic population: A 17-year
prospective multicenter study. Am J Sports Med. 38:1125–1133. 2010.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Langer R and Vacanti JP: Tissue
engineering. Science. 260:920–926. 1993. View Article : Google Scholar : PubMed/NCBI
|
16
|
Bhardwaj N and Kundu SC: Silk fibroin
protein and chitosan polyelectrolyte complex porous scaffolds for
tissue engineering applications. Carbohydrate Polymers. 85:325–333.
2011. View Article : Google Scholar
|
17
|
Bhardwaj N, Nguyen QT, Chen AC, Kaplan DL,
Sah RL and Kundu SC: Potential of 3-D tissue constructs engineered
from bovine chondrocytes/silk fibroin-chitosan for in vitro
cartilage tissue engineering. Biomaterials. 32:5773–5781. 2011.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Ji WC, Zhang XW and Qiu YS: Selected
suitable seed cell, scaffold and growth factor could maximize the
repair effect using tissue engineering method in spinal cord
injury. World J Exp Med. 6:58–62. 2016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Qi XN, Mou ZL, Zhang J and Zhang ZQ:
Preparation of chitosan/silk fibroin/hydroxyapatite porous scaffold
and its characteristics in comparison to bi-component scaffolds. J
Biomed Mater Res A. 102:366–372. 2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Garg P, Mazur MM, Buck AC, Wandtke ME, Liu
J and Ebraheim NA: Prospective Review of Mesenchymal Stem Cells
Differentiation into Osteoblasts. Orthop Surg. 9:13–19. 2017.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Fellows CR, Matta C, Zakany R, Khan IM and
Mobasheri A: Adipose, bone marrow and synovial joint-derived
mesenchymal stem cells for cartilage repair. Front Genet.
7:2132016. View Article : Google Scholar : PubMed/NCBI
|
22
|
Yamasaki S, Mera H, Itokazu M, Hashimoto Y
and Wakitani S: Cartilage repair with autologous bone marrow
mesenchymal stem cell transplantation: Review of preclinical and
clinical studies. Cartilage. 5:196–202. 2014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Potier E, Noailly J and Ito K: Directing
bone marrow-derived stromal cell function with mechanics. J
Biomech. 43:807–817. 2010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Chen Q, Shou P, Zheng C, Jiang M, Cao G,
Yang Q, Cao J, Xie N, Velletri T, Zhang X, et al: Fate decision of
mesenchymal stem cells: adipocytes or osteoblasts? Cell Death
Differ. 23:1128–1139. 2016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Schneider RK, Anraths J, Kramann R,
Bornemann J, Bovi M, Knüchel R and Neuss S: The role of
biomaterials in the direction of mesenchymal stem cell properties
and extracellular matrix remodelling in dermal tissue engineering.
Biomaterials. 31:7948–7959. 2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Abe E: Function of BMPs and BMP
antagonists in adult bone. Ann N Y Acad Sci. 1068:41–53. 2006.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Lochab AK and Extavour CG: Bone
morphogenetic protein (BMP) signaling in animal reproductive system
development and function. Dev Biol. 427:258–269. 2017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Zhang Q, He QF, Zhang TH, Yu XL, Liu Q and
Deng FL: Improvement in the delivery system of bone morphogenetic
protein-2: A new approach to promote bone formation. Biomed Mater.
7:0450022012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Starman JS, Bosse MJ, Cates CA and Norton
HJ: Recombinant human bone morphogenetic protein-2 use in the
off-label treatment of nonunions and acute fractures: A
retrospective review. J Trauma Acute Care Surg. 72:676–681. 2012.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Angle SR, Sena K, Sumner DR, Virkus WW and
Virdi AS: Healing of rat femoral segmental defect with bone
morphogenetic protein-2: A dose response study. J Musculoskelet
Neuronal Interact. 12:28–37. 2012.PubMed/NCBI
|
31
|
Hsu WK, Sugiyama O, Park SH, Conduah A,
Feeley BT, Liu NQ, Krenek L, Virk MS, An DS, Chen IS and Lieberman
JR: Lentiviral-mediated BMP-2 gene transfer enhances healing of
segmental femoral defects in rats. Bone. 40:931–938. 2007.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Miyazaki M, Sugiyama O, Tow B, Zou J,
Morishita Y, Wei F, Napoli A, Sintuu C, Lieberman JR and Wang JC:
The effects of lentiviral gene therapy with bone morphogenetic
protein-2-producing bone marrow cells on spinal fusion in rats. J
Spinal Disord Tech. 21:372–379. 2008. View Article : Google Scholar : PubMed/NCBI
|
33
|
Jiang X, Zhao J, Wang S, Sun X, Zhang X,
Chen J, Kaplan DL and Zhang Z: Mandibular repair in rats with
premineralized silk scaffolds and BMP-2-modified bMSCs.
Biomaterials. 30:4522–4532. 2009. View Article : Google Scholar : PubMed/NCBI
|
34
|
Xu XL, Tang T, Dai K, Zhu Z, Guo XE, Yu C
and Lou J: Immune response and effect of adenovirus-mediated human
BMP-2 gene transfer on the repair of segmental tibial bone defects
in goats. Acta Orthop. 76:637–646. 2005. View Article : Google Scholar : PubMed/NCBI
|
35
|
Xiao C, Zhou H, Ge S, Tang T, Hou H, Luo M
and Fan X: Repair of orbital wall defects using biocoral scaffolds
combined with bone marrow stem cells enhanced by human bone
morphogenetic protein-2 in a canine model. Int J Mol Med.
26:517–525. 2010.PubMed/NCBI
|
36
|
Wozney JM and Rosen V: Bone morphogenetic
protein and bone morphogenetic protein gene family in bone
formation and repair. Clin Orthop Relat Res. 1–37. 1998.PubMed/NCBI
|
37
|
Chen Y, Luk KD, Cheung KM, Xu R, Lin MC,
Lu WW, Leong JC and Kung HF: Gene therapy for new bone formation
using adeno-associated viral bone morphogenetic protein-2 vectors.
Gene Ther. 10:1345–1353. 2003. View Article : Google Scholar : PubMed/NCBI
|
38
|
Park J, Ries J, Gelse K, Kloss F, von der
Mark K, Wiltfang J, Neukam FW and Schneider H: Bone regeneration in
critical size defects by cell-mediated BMP-2 gene transfer: A
comparison of adenoviral vectors and liposomes. Gene Ther.
10:1089–1098. 2003. View Article : Google Scholar : PubMed/NCBI
|
39
|
Ramezani A, Hawley TS and Hawley RG:
Lentiviral vectors for enhanced gene expression in human
hematopoietic cells. Mol Ther. 2:458–469. 2000. View Article : Google Scholar : PubMed/NCBI
|
40
|
Sugiyama O, An DS, Kung SP, Feeley BT,
Gamradt S, Liu NQ, Chen IS and Lieberman JR: Lentivirus-mediated
gene transfer induces long-term transgene expression of BMP-2 in
vitro and new bone formation in vivo. Mol Ther. 11:390–398. 2005.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Virk MS, Conduah A, Park SH, Liu N,
Sugiyama O, Cuomo A, Kang C and Lieberman JR: Influence of
short-term adenoviral vector and prolonged lentiviral vector
mediated bone morphogenetic protein-2 expression on the quality of
bone repair in a rat femoral defect model. Bone. 42:921–931. 2008.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Mehta S and Watson JT: Platelet rich
concentrate: Basic science and current clinical applications. J
Orthop Trauma. 22:432–438. 2008. View Article : Google Scholar : PubMed/NCBI
|
43
|
Yamada Y, Ueda M, Naiki T, Takahashi M,
Hata K and Nagasaka T: Autogenous injectable bone for regeneration
with mesenchymal stem cells and platelet-rich plasma:
Tissue-engineered bone regeneration. Tissue Eng. 10:955–964. 2004.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Oliva A, Passaro I, Di Pasquale R, Di Feo
A, Criscuolo M, Zappia V, Della Ragione F, D'Amato S, Annunziata M
and Guida L: Ex vivo expansion of bone marrow stromal cells by
platelet-rich plasma: A promising strategy in maxillo-facial
surgery. Int J Immunopathol Pharmacol. 18:47–53. 2005.PubMed/NCBI
|
45
|
Park CG, Joo MW, Jeong J, Kang YK and Lee
DR: Evaluation of the effects of the combination of autologous
mesenchymal stem cells and platelet-rich plasma on structural bone
allograft healing. Cell Tissue Bank. 18:229–238. 2017. View Article : Google Scholar : PubMed/NCBI
|
46
|
Du X, Huang F, Zhang S, Yao Y, Chen Y,
Huang H and Bai B: Carboxymethylcellulose with phenolic hydroxyl
microcapsules enclosinggene-modified BMSCs for controlled BMP-2
release in vitro. Artif Cells Nanomed Biotechnol. 45:1–14. 2017.
View Article : Google Scholar
|
47
|
Wang SJ, Jiang D, Zhang ZZ, Huang AB, Qi
YS, Wang HJ, Zhang JY and Yu JK: Chondrogenic potential of
peripheral blood derived mesenchymal stem cells seeded on
demineralized cancellous bone scaffolds. Sci Rep. 6:364002016.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Miller L: Analyzing gels and western blots
with Image. J. Lukemiller. org. Miscellaneous Topics Vaguely
Related to Science¸. 2010.
|
50
|
Chiu LH, Lai WF, Chang SF, Wong CC, Fan
CY, Fang CL and Tsai YH: The effect of type II collagen on MSC
osteogenic differentiation and bone defect repair. Biomaterials.
35:2680–2691. 2014. View Article : Google Scholar : PubMed/NCBI
|
51
|
Hu Q, Li B, Wang M and Shen J: Preparation
and characterization of biodegradable chitosan/hydroxyapatite
nanocomposite rods via in situ hybridization: A potential material
as internal fixation of bone fracture. Biomaterials. 25:779–785.
2004. View Article : Google Scholar : PubMed/NCBI
|
52
|
Frohbergh ME, Katsman A, Botta GP,
Lazarovici P, Schauer CL, Wegst UG and Lelkes PI: Electrospun
hydroxyapatite-containing chitosan nanofibers crosslinked with
genipin for bone tissue engineering. Biomaterials. 33:9167–9178.
2012. View Article : Google Scholar : PubMed/NCBI
|
53
|
Eppley BL, Woodell JE and Higgins J:
Platelet quantification and growth factor analysis from
platelet-rich plasma: Implications for wound healing. Plast
Reconstr Surg. 114:1502–1508. 2004. View Article : Google Scholar : PubMed/NCBI
|
54
|
Bahmanpour SP, Ghasemi MP, Sadeghi-Naini
MM and Kashani IRP: Effects of platelet-rich plasma &
platelet-rich fibrin with and without stromal cell-derived factor-1
on repairing full-thickness cartilage defects in knees of rabbits.
Iran J Med Sci. 41:507–517. 2016.PubMed/NCBI
|
55
|
Lian Z, Yin X, Li H, Jia L, He X, Yan Y,
Liu N, Wan K, Li X and Lin S: Synergistic effect of bone
marrow-derived mesenchymal stem cells and platelet-rich plasma in
streptozotocin-induced diabetic rats. Ann Dermatol. 26:1–10. 2014.
View Article : Google Scholar : PubMed/NCBI
|
56
|
Dong Y, Zhang Q, Li Y, Jiang J and Chen S:
Enhancement of tendon-bone healing for anterior cruciate ligament
(ACL) reconstruction using bone marrow-derived mesenchymal stem
cells infected with BMP-2. Int J Mol Sci. 13:13605–13620. 2012.
View Article : Google Scholar : PubMed/NCBI
|
57
|
Itoi T, Harada Y, Irie H, Sakamoto M,
Tamura K, Yogo T, Soeta S, Amasaki H, Hara Y and Tagawa M:
Escherichia coli-derived recombinant human bone morphogenetic
protein-2 combined with bone marrow-derived mesenchymal stromal
cells improves bone regeneration in canine segmental ulnar defects.
BMC Vet Res. 12:2012016. View Article : Google Scholar : PubMed/NCBI
|