Open Access

Long non‑coding RNA XIST promotes osteoporosis through inhibiting bone marrow mesenchymal stem cell differentiation

  • Authors:
    • Xi Chen
    • Lei Yang
    • Dawei Ge
    • Weiwei Wang
    • Zhaowei Yin
    • Junwei Yan
    • Xiaojian Cao
    • Chunzhi Jiang
    • Shengnai Zheng
    • Bin Liang
  • View Affiliations

  • Published online on: November 29, 2018     https://doi.org/10.3892/etm.2018.7033
  • Pages: 803-811
  • Copyright: © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The purpose of the present study was to identify the key long non‑coding (lnc)RNAs in the occurrence and development of osteoporosis (OP) and to explore the associated molecular mechanism. First, the Gene Expression Omnibus (GEO) datasets, with key words ‘osteoporosis’ and ‘HG‑133A’, were screened. RankProd R package was used to calculate the dysregulated lncRNAs in OP. Following this, bone marrow mesenchymal stem cells (BM‑MSCs) harvested from 3‑week‑old Sprague Dawley rats were employed for detection of osteoblast differentiation. Following overexpression or interference with X‑inactive specific transcript (XIST), osteogenesis‑associated genes and proteins in BM‑MSCs were detected using reverse transcription‑quantitative polymerase chain reaction and western blot analysis. Alkaline phosphatase (ALP) and Alizarin Red S staining were also performed to measure the osteogenic ability of BM‑MSCs. Results from the two datasets indicated that 6 lncRNAs were dysregulated in OP. Notably, XIST is key lncRNA in diverse diseases, and was subsequently selected for analysis. It was revealed that XIST was significantly upregulated in plasma and monocytes from patients with OP compared with the normal controls. Furthermore, results indicated that overexpression of XIST significantly inhibited osteoblast differentiation in BM‑MSCs, as evidenced by the decreased expression of ALP, bone γ‑carboxyglutamic acid‑containing protein and runt related transcription factor 2, reduced ALP activity and a decreased number of calcium deposits. However, interference of XIST exhibited the opposite biological effects in BM‑MSCs. Taken together, XIST was highly expressed in the serum and monocytes of patients with OP. In addition, the findings suggested that XIST could inhibit osteogenic differentiation of BM‑MSCs.
View Figures
View References

Related Articles

Journal Cover

January-2019
Volume 17 Issue 1

Print ISSN: 1792-0981
Online ISSN:1792-1015

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Chen X, Yang L, Ge D, Wang W, Yin Z, Yan J, Cao X, Jiang C, Zheng S, Liang B, Liang B, et al: Long non‑coding RNA XIST promotes osteoporosis through inhibiting bone marrow mesenchymal stem cell differentiation. Exp Ther Med 17: 803-811, 2019.
APA
Chen, X., Yang, L., Ge, D., Wang, W., Yin, Z., Yan, J. ... Liang, B. (2019). Long non‑coding RNA XIST promotes osteoporosis through inhibiting bone marrow mesenchymal stem cell differentiation. Experimental and Therapeutic Medicine, 17, 803-811. https://doi.org/10.3892/etm.2018.7033
MLA
Chen, X., Yang, L., Ge, D., Wang, W., Yin, Z., Yan, J., Cao, X., Jiang, C., Zheng, S., Liang, B."Long non‑coding RNA XIST promotes osteoporosis through inhibiting bone marrow mesenchymal stem cell differentiation". Experimental and Therapeutic Medicine 17.1 (2019): 803-811.
Chicago
Chen, X., Yang, L., Ge, D., Wang, W., Yin, Z., Yan, J., Cao, X., Jiang, C., Zheng, S., Liang, B."Long non‑coding RNA XIST promotes osteoporosis through inhibiting bone marrow mesenchymal stem cell differentiation". Experimental and Therapeutic Medicine 17, no. 1 (2019): 803-811. https://doi.org/10.3892/etm.2018.7033