1
|
Satoh T: Current practice for pulmonary
hypertension. Chin Med J (Engl). 127:3491–3195. 2014.PubMed/NCBI
|
2
|
Stein PD, Matta F and Hughes PG: Scope of
problem of pulmonary arterial hypertension. Am J Med. 128:844–851.
2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Ball MK, Waypa GB, Mungai PT, Nielsen JM,
Czech L, Dudley VJ, Beussink L, Dettman RW, Berkelhamer SK,
Steinhorn RH, et al: Regulation of hypoxia-induced pulmonary
hypertension by vascular smooth muscle hypoxia-inducible factor-1α.
Am J Respir Crit Care Med. 189:314–324. 2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Pullamsetti SS, Schermuly R, Ghofrani A,
Weissmann N, Grimminger F and Seeger W: Novel and emerging
therapies for pulmonary hypertension. Am J Respir Crit Care Med.
189:394–400. 2014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Jeffery TK and Wanstall JC: Pulmonary
vascular remodeling: A target for therapeutic intervention in
pulmonary hypertension. Pharmacol Ther. 92:1–20. 2001. View Article : Google Scholar : PubMed/NCBI
|
6
|
Kim DW, Kwon JS, Kim YG, Kim MS, Lee GS,
Youn TJ and Cho MC: Novel oral formulation of paclitaxel inhibits
neointimal hyperplasia in a rat carotid artery injury model.
Circulation. 109:1558–1563. 2004. View Article : Google Scholar : PubMed/NCBI
|
7
|
Wöhrle J, Birkemeyer R, Markovic S, Nguyen
TV, Sinha A, Miljak T, Spiess J, Rottbauer W and Rittger H:
Prospective randomised trial evaluating a paclitaxel-coated balloon
in patients treated with endothelial progenitor cell capturing
stents for de novo coronary artery disease. Heart. 97:1338–1342.
2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Zhang Z, Mei L and Feng SS: Paclitaxel
drug delivery systems. Expert Opin Drug Deliv. 10:325–340. 2013.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Seedial SM, Ghosh S, Saunders RS,
Suwanabol PA, Shi X, Liu B and Kent KC: Local drug delivery to
prevent restenosis. J Vasc Surg. 57:1403–1414. 2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Waugh J and Wagstaff AJ: The paclitaxel
(TAXUS)-eluting stent: A review of its use in the management of de
novo coronary artery lesions. Am J Cardiovasc Drugs. 4:257–268.
2004. View Article : Google Scholar : PubMed/NCBI
|
11
|
Leopardi M, Houbballah R and Becquemin JP:
Effectiveness of Zilver PTX eluting stent in TASC C/D lesions and
restenosis. J Cardiovasc Surg (Torino). 55:229–234. 2014.PubMed/NCBI
|
12
|
Yang J, Zeng Y, Zhang C, Chen YX, Yang Z,
Li Y, Leng X, Kong D, Wei XQ, Sun HF and Song CX: The prevention of
restenosis in vivo with a VEGF gene and paclitaxel co-eluting
stent. Biomaterials. 34:1635–1643. 2013. View Article : Google Scholar : PubMed/NCBI
|
13
|
Schiff PB, Fant J and Horwitz SB:
Promotion of microtubule assembly in vitro by taxol. Nature.
277:665–667. 1979. View
Article : Google Scholar : PubMed/NCBI
|
14
|
Lohberger B, Leithner A, Stuendl N,
Kaltenegger H, Kullich W and Steinecker-Frohnwieser B: Diacerein
retards cell growth of chondrosarcoma cells at the G2/M cell cycle
checkpoint via cyclin B1/CDK1 and CDK2 downregulation. BMC Cancer.
15:8912015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Chen X, Gu Y, Singh K, Shang C, Barzegar
M, Jiang S and Huang S: Maduramicin inhibits proliferation and
induces apoptosis in myoblast cells. PLoS One. 9:e1156522014.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Tsui LV, Camrud A, Mondesire J, Carlson P,
Zayek N, Camrud L, Donahue B, Bauer S, Lin A, Frey D, et al:
p27-p16 fusion gene inhibits angioplasty-induced neointimal
hyperplasia and coronary artery occlusionn. Circ Res. 89:323–328.
2001. View Article : Google Scholar : PubMed/NCBI
|
17
|
Li XW, Hu CP, Wu WH, Zhang WF, Zou XZ and
Li YJ: Inhibitory effect of calcitonin gene-related peptide on
hypoxia-induced rat pulmonary artery smooth muscle cells
proliferation: Role of ERK1/2 and p27. Eur J Pharmacol.
679:117–126. 2012. View Article : Google Scholar : PubMed/NCBI
|
18
|
Tanner FC, Yang ZY, Duckers E, Gordon D,
Nabel GJ and Nabel EG: Expression of cyclin-dependent kinase
inhibitors in vascular disease. Circ Res. 82:396–403. 1998.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Signore PE, Machan LS, Jackson JK, Burt H,
Bromley P, Wilson JE and McManus BM: Complete inhibition of intimal
hyperplasia by perivascular delivery of paclitaxel in
balloon-injured rat carotid arteries. J Vasc Interv Radiol.
12:79–88. 2001. View Article : Google Scholar : PubMed/NCBI
|
20
|
Kusuma SS, Tanneeru K, Didla S, Devendra
BN and Kiranmayi P: Antineoplastic activity of monocrotaline
against hepatocellular carcinoma. Anticancer Agents Med Chem.
14:1237–1248. 2014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Schermuly RT, Kreisselmeier KP, Ghofrani
HA, Yilmaz H, Butrous G, Ermert L, Ermert M, Weissmann N, Rose F,
Guenther A, et al: Chronic sildenafil treatment inhibits
monocrotaline-induced pulmonary hypertension in rats. Am J Respir
Crit Care Med. 169:39–45. 2004. View Article : Google Scholar : PubMed/NCBI
|
22
|
Liu B, Liu HM, Yu L, Sun XJ, Wei L, Wang
XM and Zhou TF: Expression of GATA6 gene in lung tissue of rat with
pulmonary hypertension. Sichuan Da Xue Xue Bao Yi Xue Ban.
37:864–867, 875. 2006.(In Chinese). PubMed/NCBI
|
23
|
Dettmer S, Peters L, de Wall C,
Schaefer-Prokop C, Schmidt M, Warnecke G, Gottlieb J, Wacker F and
Shin HO: Bronchial wall measurements in patients after lung
transplantation: Evaluation of the diagnostic value for the
diagnosis of bronchiolitis obliterans syndrome. PLoS One.
9:e937832014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Hoshikawa Y, Ono S, Suzuki S, Tanita T,
Chida M, Song C, Noda M, Tabata T, Voelkel NF and Fujimura S:
Generation of oxidative stress contributes to the development of
pulmonary hypertension induced by hypoxia. J Appl Physiol (1985).
90:1299–1306. 2001. View Article : Google Scholar : PubMed/NCBI
|
25
|
Runo JR and Loyd JE: Primary pulmonary
hypertension. Lancet. 361:1533–1544. 2003. View Article : Google Scholar : PubMed/NCBI
|
26
|
Li J, Wang Y, Zhu Y and Oupický D: Recent
advances in delivery of drug-nucleic acid combinations for cancer
treatment. J Control Release. 172:589–600. 2013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Zhang D, Yang R, Wang S and Dong Z:
Paclitaxel: New uses for an old drug. Drug Des Devel Ther.
8:279–284. 2014.PubMed/NCBI
|
28
|
Kumar A, Hoskins PJ and Tinker AV:
Dose-dense paclitaxel in advanced ovarian cancer. Clin Oncol (R
Coll Radiol). 27:40–47. 2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Howat S, Park B, Oh IS, Jin YW, Lee EK and
Loake GJ: Paclitaxel: biosynthesis, production and future
prospects. N Biotechnol. 31:242–245. 2014. View Article : Google Scholar : PubMed/NCBI
|
30
|
Choi BM, Kim YM, Jeong YR, Pae HO, Song
CE, Park JE, Ahn YK and Chung HT: Induction of heme oxygenase-1 is
involved in anti-proliferative effects of paclitaxel on rat
vascular smooth muscle cells. Biochem Biophys Res Commun.
321:132–137. 2004. View Article : Google Scholar : PubMed/NCBI
|
31
|
Hemmer JD, Nagatomi J, Wood ST, Vertegel
AA, Dean D and Laberge M: Role of cytoskeletal components in
stress-relaxation behavior of adherent vascular smooth muscle
cells. J Biomech Eng. 131:0410012009. View Article : Google Scholar : PubMed/NCBI
|
32
|
Axel DI, Kunert W, Göggelmann C, Oberhoff
M, Herdeg C, Küttner A, Wild DH, Brehm BR, Riessen R, Köveker G and
Karsch KR: Paclitaxel inhibits arterial smooth muscle cell
proliferation and migration in vitro and in vivo using local drug
delivery. Circulation. 96:636–645. 1997. View Article : Google Scholar : PubMed/NCBI
|
33
|
Wiskirchen J, Schöber W, Schart N,
Kehlbach R, Wersebe A, Tepe G, Claussen CD and Duda SH: The effects
of paclitaxel on the three phases of restenosis: Smooth muscle cell
proliferation, migration, and matrix formation: An in vitro study.
Invest Radiol. 39:565–571. 2004. View Article : Google Scholar : PubMed/NCBI
|
34
|
Tian W, Kuhlmann MT, Pelisek J, Scobioala
S, Quang TH, Hasib L, Klocke R, Jahn UR and Nikol S: Paclitaxel
delivered to adventitia attenuates neointima formation without
compromising re-endothelialization after angioplasty in a porcine
restenosis model. J Endovasc Ther. 13:616–629. 2006. View Article : Google Scholar : PubMed/NCBI
|
35
|
Schwartz EL: Antivascular actions of
microtubule-binding drugs. Clin Cancer Res. 15:2594–2601. 2009.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Shimoda LA and Laurie SS: Vascular
remodeling in pulmonary hypertension. J Mol Med (Berl). 91:297–309.
2013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Foris V, Kovacs G, Tscherner M, Olschewski
A and Olschewski H: Biomarkers in pulmonary hypertension: What do
we know? Chest. 144:274–283. 2013. View Article : Google Scholar : PubMed/NCBI
|
38
|
Lluis M, Fernández-Solà J, Castellvi-Bel
S, Sacanella E, Estruch R and Urbano-Márquez A: Evaluation of
myocyte proliferation in alcoholic cardiomyopathy: Telomerase
enzyme activity (TERT) compared with Ki-67 expression. Alcohol
Alcohol. 46:534–541. 2011. View Article : Google Scholar : PubMed/NCBI
|
39
|
Jing L, Peng X, Xie MJ, Yu ZY and Wang W:
Different responses of cell cycle between rat vascular smooth
muscle cells and vascular endothelial cells to paclitaxel. J
Huazhong Univ Sci Technolog Med Sci. 34:370–375. 2014. View Article : Google Scholar : PubMed/NCBI
|
40
|
Wu X, Huang L, Zhou Q, Song Y, Li A, Wang
H and Song M: Effect of paclitaxel and mesenchymal stem cells
seeding on ex vivo vascular endothelial repair and smooth muscle
cells growth. J Cardiovasc Pharmacol. 46:779–786. 2005. View Article : Google Scholar : PubMed/NCBI
|
41
|
Marx SO, Totary-Jain H and Marks AR:
Vascular smooth muscle cell proliferation in restenosis. Circ
Cardiovasc Interv. 4:104–111. 2011. View Article : Google Scholar : PubMed/NCBI
|
42
|
Lao LL and Venkatraman SS: Adjustable
paclitaxel release kinetics and its efficacy to inhibit smooth
muscle cells proliferation. J Control Release. 130:9–14. 2008.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Yoon MK, Mitrea DM, Ou L and Kriwacki RW:
Cell cycle regulation by the intrinsically disordered proteins p21
and p27. Biochem Soc Trans. 40:981–988. 2012. View Article : Google Scholar : PubMed/NCBI
|
44
|
Wang Z, Fan M, Candas D, Zhang TQ, Qin L,
Eldridge A, Wachsmann-Hogiu S, Ahmed KM, Chromy BA, Nantajit D, et
al: Cyclin B1/Cdk1 coordinates mitochondrial respiration for
cell-cycle G2/M progression. Dev Cell. 29:217–232. 2014. View Article : Google Scholar : PubMed/NCBI
|
45
|
Sharma SS, Ma L and Pledger WJ: p27Kip1
inhibits the cell cycle through non-canonical G1/S phase-specific
gatekeeper mechanism. Cell Cycle. 14:3954–3964. 2015. View Article : Google Scholar : PubMed/NCBI
|
46
|
Bryant P, Zheng Q and Pumiglia K: Focal
adhesion kinase controls cellular levels of p27/Kip1 and p21/Cip1
through Skp2-dependent and -independent mechanisms. Mol Cell Biol.
26:4201–4213. 2006. View Article : Google Scholar : PubMed/NCBI
|
47
|
Fouty BW, Grimison B, Fagan KA, Le Cras
TD, Harral JW, Hoedt-Miller M, Sclafani RA and Rodman DM: p27(Kip1)
is important in modulating pulmonary artery smooth muscle cell
proliferation. Am J Respir Cell Mol Biol. 25:652–658. 2001.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Song P, Wang S, He C, Wang S, Liang B,
Viollet B and Zou MH: AMPKα2 deletion exacerbates neointima
formation by upregulating Skp2 in vascular smooth muscle cells.
Circ Res. 109:1230–1239. 2011. View Article : Google Scholar : PubMed/NCBI
|
49
|
Roy A and Banerjee S: p27 and leukemia:
Cell cycle and beyond. J Cell Physiol. 230:504–509. 2015.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Tanner FC, Boehm M, Akyürek LM, San H,
Yang ZY, Tashiro J, Nabel GJ and Nabel EG: Differential effects of
the cyclin-dependent kinase inhibitors p27(Kip1), p21(Cip1), and
p16(Ink4) on vascular smooth muscle cell proliferation.
Circulation. 101:2022–2025. 2000. View Article : Google Scholar : PubMed/NCBI
|
51
|
Chang MW, Barr E, Lu MM, Barton K and
Leiden JM: Adenovirus-mediated over-expression of the
cyclin/cyclin-dependent kinase inhibitor, p21 inhibits vascular
smooth muscle cell proliferation and neointima formation in the rat
carotid artery model of balloon angioplasty. J Clin Invest.
96:2260–2268. 1995. View Article : Google Scholar : PubMed/NCBI
|
52
|
Murray AW: Recycling the cell cycle:
Cyclins revisited. Cell. 116:221–234. 2004. View Article : Google Scholar : PubMed/NCBI
|
53
|
Lenart P, Rabut G, Daigle N, Hand AR,
Terasaki M and Ellenberg J: Nuclear envelope breakdown in starfish
oocytes proceeds by partial NPC disassembly followed by a rapidly
spreading fenestration of nuclear membranes. J Cell Biol.
160:1055–1068. 2003. View Article : Google Scholar : PubMed/NCBI
|
54
|
Terasaki M, Okumura E, Hinkle B and
Kishimoto T: Localization and dynamics of Cdc2-cyclin B during
meiotic reinitiation in starfish oocytes. Mol Biol Cell.
14:4685–4694. 2016. View Article : Google Scholar
|
55
|
Granada JF, Ensenat D, Keswani AN, Kaluza
GL, Raizner AE, Liu XM, Peyton KJ, Azam MA, Wang H and Durante W:
Single perivascular delivery of mitomycin C stimulates p21
expression and inhibits neointima formation in rat arteries.
Arterioscler Thromb Vasc Biol. 25:2343–2348. 2005. View Article : Google Scholar : PubMed/NCBI
|
56
|
Tang L, Chen X, Tang S, LaLonde T and
Gardin JM: Granulation encapsulated stent: A new therapeutic
approach for vascular implantation. Heart. 93:238–243. 2006.
View Article : Google Scholar : PubMed/NCBI
|
57
|
Sugihara E, Kanai M, Saito S, Nitta T,
Toyoshima H, Nakayama K, Nakayama KI, Fukasawa K, Schwab M, Saya H
and Miwa M: Suppression of centrosome amplification after DNA
damage depends on p27 accumulation. Cancer Res. 66:4020–4029. 2006.
View Article : Google Scholar : PubMed/NCBI
|
58
|
Zhang X, Liu J, Pang X, Zhao J, Wang S and
Wu D: Aldosterone induces C-reactive protein expression via
MR-ROS-MAPK-NF-κB signal pathway in rat vascular smooth muscle
cells. Mol Cell Endocrinol. 395:61–68. 2014. View Article : Google Scholar : PubMed/NCBI
|
59
|
Ouyang QF, Han Y, Lin ZH, Xie H, Xu CS and
Xie LD: Fluvastatin upregulates the α 1C subunit of CaV1.2 channel
expression in vascular smooth muscle cells via RhoA and ERK/p38
MAPK pathways. Dis Markers. 2014:2370672014. View Article : Google Scholar : PubMed/NCBI
|
60
|
Proudfoot D and Shanahan C: Human vascular
smooth muscle cell culture. Methods Mol Biol. 806:251–263. 2012.
View Article : Google Scholar : PubMed/NCBI
|
61
|
Andrés V and Castro C: Antiproliferative
strategies for the treatment of vascular proliferative disease.
Curr Vasc Pharmacol. 1:85–98. 2003. View Article : Google Scholar : PubMed/NCBI
|
62
|
Yin Y, Wu X, Yang Z, Zhao J, Wang X, Zhang
Q, Yuan M, Xie L, Liu H and He Q: The potential efficacy of
R8-modified paclitaxel-loaded liposomes on pulmonary arterial
hypertension. Pharm Res. 30:2050–2062. 2013. View Article : Google Scholar : PubMed/NCBI
|