1
|
Leary A, Auclin E, Pautier P and Lhommé C:
The PI3K/Akt/mTOR pathway in ovarian cancer: Biological rationale
and therapeutic opportunities. Ovarian Cancer-A Clinical and
Translational Update. 275–302. 2013.
|
2
|
Cancer Genome Atlas Research Network:
Integrated genomic analyses of ovarian carcinoma. Nature.
474:609–615. 2011. View Article : Google Scholar : PubMed/NCBI
|
3
|
Altomare DA and Testa JR: Perturbations of
the AKT signaling pathway in human cancer. Oncogene. 24:7455–7464.
2005. View Article : Google Scholar : PubMed/NCBI
|
4
|
Engelman JA: Targeting PI3K signalling in
cancer: Opportunities, challenges and limitations. Nat Rev Can.
9:550–562. 2009. View
Article : Google Scholar
|
5
|
Hafeez BB, Siddiqui IA, Asim M, Malik A,
Afaq F, Adhami VM, Saleem M, Din M and Mukhtar H: A dietary
anthocyanidin delphinidin induces apoptosis of human prostate
cancer PC3 cells in vitro and in vivo: Involvement of nuclear
factor-kappa B signaling. Cancer Res. 68:8564–8572. 2008.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Hafeez BB, Fischer JW, Singh A, Zhong W,
Mustafa A, Meske L, Sheikhani MO and Verma AK: Plumbagin inhibits
prostate carcinogenesis in intact and castrated PTEN knockout mice
via targeting PKCε, Stat3, and epithelial-to-mesenchymal transition
markers. Cancer Prev Res (Phila). 8:375–386. 2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Lall RK, Adhami VM and Mukhtar H: Dietary
flavonoid fisetin for cancer prevention and treatment. Mol Nutr
Food Res. 60:1396–1405. 2016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Gülçin I: Antioxidant activity of caffeic
acid (3,4-dihydroxycinnamic acid). Toxicology. 217:213–220. 2006.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Cook NC and Samman S:
Flavonoids-chemistry, metabolism, cardioprotective effects and
dietary sources. J NutBiochem. 7:66–76. 1996.
|
10
|
Rice-Evans CA, Miller NJ, Bolwell PG,
Bramley PM and Pridham JB: The relative antioxidant activities of
plant derived polyphenolic flavonoids. Free Radic Res. 22:375–383.
1995. View Article : Google Scholar : PubMed/NCBI
|
11
|
Kandaswami C, Lee LT, Lee PP, Hwang JJ, Ke
FC, Huang YT and Lee MT: The antitumor activities of flavonoids. In
vivo. 19:895–909. 2005.PubMed/NCBI
|
12
|
Ren W, Qiao Z, Wang H, Zhu L and Zhang L:
Flavonoids: promising anticancer agents. Med Res Rev. 23:519–534.
2003. View Article : Google Scholar : PubMed/NCBI
|
13
|
Ravindranath MH, Muthugounder S, Presser N
and Viswanathan S: Anticancer therapeutic potential of soy
isoflavone, genistein. Adv Exp Med Biol. 546:121–165. 2004.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Wang HK: The therapeutic potential of
flavonoids. Expert Opin Investig Drugs. 9:2103–2119. 2000.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Nasr Bouzaiene N, Chaabane F, Sassi A,
Chekir-Ghedira L and Ghedira K: Effect of apigenin-7-glucoside,
genkwanin and naringenin on tyrosinase activity and melanin
synthesis in B16F10 melanoma cells. Life Sci. 144:80–85. 2016.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Androutsopoulos VP, Ruparelia K, Arroo RR,
Tsatsakis AM and Spandidos DA: CYP1-mediated antiproliferative
activity of dietary flavonoids in MDA-MB-468 breast cancer cells,
Toxicology. 264:162–170. 2009.PubMed/NCBI
|
17
|
Alvarez R, Velázquez S, San-Félix A,
Aquaro S, De Clercq E, Perno CF, Karlsson A, Balzarini J and
Camarasa MJ:
1,2,3-Triazole-[2′,5′-bis-O-(tert-butyldimethylsilyl)-beta-D-ribofuranosyl]-3′-spiro-5″-(4″-amino-1″,2″-oxathiole
2″,2″-dioxide) (TSAO) analogues: synthesis and anti-HIV-1 activity.
J Med Chem. 37:4185–4194. 1994. View Article : Google Scholar : PubMed/NCBI
|
18
|
Genin MJ, Allwine DA, Anderson DJ,
Barbachyn MR, Emmert DE, Garmon SA, Graber DR, Grega KC, Hester JB,
Hutchinson DK, et al: Substituent effects on the antibacterial
activity of nitrogen-carbon-linked (azolylphenyl)oxazolidinones
with expanded activity against the fastidious gram-negative
organisms Haemophilus influenzae and Moraxella catarrhalis. J Med
Chem. 43:953–970. 2000. View Article : Google Scholar : PubMed/NCBI
|
19
|
Majeed R, Sangwan PL, Chinthakindi PK,
Khan I, Dangroo NA, Thota N, Hamid A, Sharma PR, Saxena AK and Koul
S: Synthesis of 3-O-propargylated betulinic acid and its
1,2,3-triazoles as potential apoptotic agents. Eur J Med Chem.
63:782–792. 2013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Mack DJ, Weinrich ML, Vitaku E and
Njarðarson JT: Top 200 Brand Name Drugs by US Retail Sales in 2010.
J Chem Ed. 87:13482010.
|
21
|
Waring MJ: Lipophilicity in drug
discovery. Expert Opin Drug Discov. 5:235–248. 2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Lipinski CA, Lombardo F, Dominy BW and
Feeney PJ: Experimental and computational approaches to estimate
solubility and permeability in drug discovery and development
settings. Adv Drug Deliv Rev. 46:3–26. 2001. View Article : Google Scholar : PubMed/NCBI
|
23
|
Ferreira SB, Sodero AC, Cardoso MF, Lima
ES, Kaiser CR, Silva FP and Ferreira VF: Synthesis, biological
activity, and molecular modeling studies of 1H-1,2,3-triazole
derivatives of carbohydrates as alpha-glucosidases inhibitors. J
Med Chem. 53:2364–2375. 2010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Whiting M, Muldoon J, Lin YC, Silverman
SM, Lindstrom W, Olson AJ, Kolb HC, Finn MG, Sharpless KB, Elder JH
and Fokin VV: Inhibitors of HIV-1 protease by using in situ click
chemistry. Angew Chem Int Ed Engl. 45:1435–1439. 2006. View Article : Google Scholar : PubMed/NCBI
|
25
|
Lauria A, Delisi R, Mingoia F, Terenzi A,
Martorana A, Barone G and Almerico AM: 1,2,3-Triazole in
heterocyclic compounds, endowed with biological activity, through
1,3-dipolar cycloadditions. Eur J Org Chem. 16:3289–3306. 2014.
View Article : Google Scholar
|
26
|
Sun SY, Hail N Jr and Lotan R: Apoptosis
as a novel target for cancer chemoprevention. J Natl Cancer Inst.
96:662–672. 2004. View Article : Google Scholar : PubMed/NCBI
|
27
|
Chiang JH, Yang JS, Ma CY, Yang MD, Huang
HY, Hsia TC, Kuo HM, Wu PP, Lee TH and Chung JG: Danthron, an
anthraquinone derivative, induces DNA damage and caspase
cascades-mediated apoptosis in SNU-1 human gastric cancer cells
through mitochondrial permeability transition pores and
Bax-triggered pathways. Chem Res Toxicol. 24:20–29. 2011.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Maitra R, Porter MA, Huang S and Gilmour
BP: Inhibition of NFkappaB by the natural product Withaferin A in
cellular models of Cystic Fibrosis inflammation. J Inflamm (Lond).
6:152009. View Article : Google Scholar : PubMed/NCBI
|
29
|
Hissin PJ and Hilf R: A fluorometric
method for determination of oxidized and reduced glutathione in
tissues. Anal Biochem. 74:214–226. 1976. View Article : Google Scholar : PubMed/NCBI
|
30
|
Chipuk JE, Bouchier-Hayes L and Green DR:
Mitochondrial outer membrane permeabilization during apoptosis: The
innocent bystander scenario. Cell Death Differ. 13:1396–1402. 2006.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Azuma M, Tamatani T, Ashida Y, Takashima
R, Harada K and Sato M: Cisplatin induces apoptosis in oral
squamous carcinoma cells by the mitochondria-mediated but not the
NF-kappaB-suppressed pathway. Oral Oncol. 39:282–289. 2003.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Yoneda K, Yamamoto T and Osaki T: p53- and
p21-independent apoptosis of squamous cell carcinoma cells induced
by 5-fluorouracil and radiation. Oral Oncol. 34:529–537. 1998.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Abal M, Andreu JM and Barasoain I:
Taxanes: Microtubule and centrosome targets, and cell cycle
dependent mechanisms of action. Curr Canc Drug Targs. 3:193–203.
2003. View Article : Google Scholar
|
34
|
Ferreira CG, Epping M, Kruyt FA and
Giaccone G: Apoptosis: Target of cancer therapy. Clin Cancer Res.
8:2024–2034. 2002.PubMed/NCBI
|
35
|
Malaguarnera L: Implications of apoptosis
regulators in tumorigenesis. Cancer Met Rev. 23:367–387. 2004.
View Article : Google Scholar
|
36
|
Ding H, Han C, Guo D, Chin YW, Ding Y,
Kinghorn AD and D'Ambrosio SM: Selective induction of apoptosis of
human oral cancer cell lines by avocado extracts via a ROS-mediated
mechanism. Nutr Cancer. 61:348–356. 2009. View Article : Google Scholar : PubMed/NCBI
|
37
|
Kowaltowski AJ, de Souza-Pinto NC,
Castilho RF and Vercesi AE: Mitochondria and reactive oxygen
species. Free Radic Biol Med. 47:333–343. 2009. View Article : Google Scholar : PubMed/NCBI
|