1
|
Schauer PR, Bhatt DL, Kirwan JP, Wolski K,
Brethauer SA, Navaneethan SD, Aminian A, Pothier CE, Kim ES, Nissen
SE, et al: Bariatric surgery versus intensive medical therapy for
diabetes-3-year outcomes. N Engl J Med. 370:2002–2013. 2014.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Colquitt JL, Pickett K, Loveman E and
Frampton GK: Surgery for weight loss in adults. Cochrane Database
Syst Rev. Cd0036412014.PubMed/NCBI
|
3
|
Hayoz C, Hermann T, Raptis DA, Brönnimann
A, Peterli R and Zuber M: Comparison of metabolic outcomes in
patients undergoing laparoscopic roux-en-Y gastric bypass versus
sleeve gastrectomy-a systematic review and meta-analysis of
randomised controlled trials. Swiss Med Wkly.
148:w146332018.PubMed/NCBI
|
4
|
Liaskos C, Koliaki C, Alexiadou K,
Argyrakopoulou G, Tentolouris N, Diamantis T, Alexandrou A,
Katsilambros N and Kokkinos A: Roux-en-Y gastric bypass is more
effective than sleeve gastrectomy in improving postprandial
glycaemia and lipaemia in non-diabetic morbidly obese patients: A
short-term follow-up analysis. Obes Surg. 28:3997–4005. 2018.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Behary P and Miras AD: Food preferences
and underlying mechanisms after bariatric surgery. Proc Nutr Soc.
74:419–425. 2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Thaler JP and Cummings DE: Minireview:
Hormonal and metabolic mechanisms of diabetes remission after
gastrointestinal surgery. Endocrinology. 150:2518–2525. 2009.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Liu R, Hong J, Xu X, Feng Q, Zhang D, Gu
Y, Shi J, Zhao S, Liu W, Wang X, et al: Gut microbiome and serum
metabolome alterations in obesity and after weight-loss
intervention. Nat Med. 23:859–868. 2017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Carlson AL, Xia K, Azcarate-Peril MA,
Goldman BD, Ahn M, Styner MA, Thompson AL, Geng X, Gilmore JH and
Knickmeyer RC: Infant gut microbiome associated with cognitive
development. Biol Psychiatry. 83:148–159. 2018. View Article : Google Scholar : PubMed/NCBI
|
9
|
Kitai T and Tang WHW: Gut microbiota in
cardiovascular disease and heart failure. Clin Sci (Lond).
132:85–91. 2018. View Article : Google Scholar : PubMed/NCBI
|
10
|
Tang R, Jiang Y, Tan A, Ye J, Xian X, Xie
Y, Wang Q, Yao Z and Mo Z: 16S rRNA gene sequencing reveals altered
composition of gut microbiota in individuals with kidney stones.
Urolithiasis. 46:503–514. 2018. View Article : Google Scholar : PubMed/NCBI
|
11
|
Kasai C, Sugimoto K, Moritani I, Tanaka J,
Oya Y, Inoue H, Tameda M, Shiraki K, Ito M, Takei Y and Takase K:
Comparison of the gut microbiota composition between obese and
non-obese individuals in a Japanese population, as analyzed by
terminal restriction fragment length polymorphism and
next-generation sequencing. BMC Gastroenterol. 15:1002015.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Turnbaugh PJ, Hamady M, Yatsunenko T,
Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA,
Affourtit JP, et al: A core gut microbiome in obese and lean twins.
Nature. 457:480–484. 2009. View Article : Google Scholar : PubMed/NCBI
|
13
|
Zhang H, DiBaise JK, Zuccolo A, Kudrna D,
Braidotti M, Yu Y, Parameswaran P, Crowell MD, Wing R, Rittmann BE
and Krajmalnik-Brown R: Human gut microbiota in obesity and after
gastric bypass. Proc Natl Acad Sci USA. 106:2365–2370. 2009.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Tremaroli V, Karlsson F, Werling M,
Ståhlman M, Kovatcheva-Datchary P, Olbers T, Fändriks L, le Roux
CW, Nielsen J and Bäckhed F: Roux-en-Y gastric bypass and vertical
banded gastroplasty induce long-term changes on the human gut
microbiome contributing to fat mass regulation. Cell Metab.
22:228–238. 2015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Palleja A, Kashani A, Allin KH, Nielsen T,
Zhang C, Li Y, Brach T, Liang S, Feng Q, Jørgensen NB, et al:
Roux-en-Y gastric bypass surgery of morbidly obese patients induces
swift and persistent changes of the individual gut microbiota.
Genome Med. 8:672016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Sanmiguel CP, Jacobs J, Gupta A, Ju T,
Stains J, Coveleskie K, Lagishetty V, Balioukova A, Chen Y, Dutson
E, et al: Surgically induced changes in gut microbiome and hedonic
eating as related to weight loss: Preliminary findings in obese
women undergoing bariatric surgery. Psychosom Med. 79:880–887.
2017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Griffith GW, Ozkose E, Theodorou MK and
Davies DR: Diversity of anaerobic fungal populations in cattle
revealed by selective enrichment culture using different carbon
sources. Fungal Ecol. 2:87–97. 2009. View Article : Google Scholar
|
18
|
Martin M: Cutadapt removes adapter
sequences from high-throughput sequencing reads. Embnet J. 17:2011,
https://doi.org/10.14806/ej.17.1.200 View Article : Google Scholar
|
19
|
Quast C, Pruesse E, Yilmaz P, Gerken J,
Schweer T, Yarza P, Peplies J and Glöckner FO: The SILVA ribosomal
RNA gene database project: Improved data processing and web-based
tools. Nucleic Acids Res. 41:(Database Issue). D590–D596. 2013.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Edgar RC, Haas BJ, Clemente JC, Quince C
and Knight R: UCHIME improves sensitivity and speed of chimera
detection. Bioinformatics. 27:2194–2200. 2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Haas BJ, Gevers D, Earl AM, Feldgarden M,
Ward DV, Giannoukos G, Ciulla D, Tabbaa D, Highlander SK, Sodergren
E, et al: Chimeric 16S rRNA sequence formation and detection in
Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 21:494–504.
2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Edgar RC: UPARSE: Highly accurate OTU
sequences from microbial amplicon reads. Nat Methods. 10:996–998.
2013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Edgar RC: MUSCLE: Multiple sequence
alignment with high accuracy and high throughput. Nucleic Acids
Res. 32:1792–1797. 2004. View Article : Google Scholar : PubMed/NCBI
|
24
|
Segata N, Izard J, Waldron L, Gevers D,
Miropolsky L, Garrett WS and Huttenhower C: Metagenomic biomarker
discovery and explanation. Genome Biol. 12:R602011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Buchwald H, Avidor Y, Braunwald E, Jensen
MD, Pories W, Fahrbach K and Schoelles K: Bariatric surgery: A
systematic review and meta-analysis. JAMA. 292:1724–1737. 2004.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Maggard MA, Shugarman LR, Suttorp M,
Maglione M, Sugerman HJ, Livingston EH, Nguyen NT, Li Z, Mojica WA,
Hilton L, et al: Meta-analysis: Surgical treatment of obesity. Ann
Intern Med. 142:547–559. 2005. View Article : Google Scholar : PubMed/NCBI
|
27
|
Peck BCE and Seeley RJ: How does
‘metabolic surgery’ work its magic? New evidence for gut
microbiota. Curr Opin Endocrinol Diabetes Obes. 25:81–86.
2018.PubMed/NCBI
|
28
|
Guo Y, Liu CQ, Shan CX, Chen Y, Li HH,
Huang ZP and Zou DJ: Gut microbiota after Roux-en-Y gastric bypass
and sleeve gastrectomy in a diabetic rat model: Increased diversity
and associations of discriminant genera with metabolic changes.
Diabetes Metab Res Rev. 33:2017.doi: 10.1002/dmrr.2857. View Article : Google Scholar : PubMed/NCBI
|
29
|
López-Contreras BE, Morán-Ramos S,
Villarruel-Vázquez R, Macías-Kauffer L, Villamil-Ramírez H,
León-Mimila P, Vega-Badillo J, Sánchez-Muñoz F, Llanos-Moreno LE,
Canizalez-Román A, et al: Composition of gut microbiota in obese
and normal-weight Mexican school-age children and its association
with metabolic traits. Pediatr Obes. 13:381–388. 2018. View Article : Google Scholar : PubMed/NCBI
|
30
|
Hakkak R, Korourian S, Foley SL and
Erickson BD: Assessment of gut microbiota populations in lean and
obese Zucker rats. PLoS One. 12:e01814512017. View Article : Google Scholar : PubMed/NCBI
|
31
|
Yun Y, Kim HN, Kim SE, Heo SG, Chang Y,
Ryu S, Shin H and Kim HL: Comparative analysis of gut microbiota
associated with body mass index in a large Korean cohort. BMC
Microbiol. 17:1512017. View Article : Google Scholar : PubMed/NCBI
|
32
|
Jahansouz C, Staley C, Bernlohr DA,
Sadowsky MJ, Khoruts A and Ikramuddin S: Sleeve gastrectomy drives
persistent shifts in the gut microbiome. Surg Obes Relat Dis.
13:916–924. 2017. View Article : Google Scholar : PubMed/NCBI
|
33
|
Kong LC, Tap J, Aron-Wisnewsky J, Pelloux
V, Basdevant A, Bouillot JL, Zucker JD, Doré J and Clément K: Gut
microbiota after gastric bypass in human obesity: increased
richness and associations of bacterial genera with adipose tissue
genes. Am J Clin Nutr. 98:16–24. 2013. View Article : Google Scholar : PubMed/NCBI
|
34
|
Medina DA, Pedreros JP, Turiel D, Quezada
N, Pimentel F, Escalona A and Garrido D: Distinct patterns in the
gut microbiota after surgical or medical therapy in obese patients.
PeerJ. 5:e34432017. View Article : Google Scholar : PubMed/NCBI
|
35
|
Menni C, Jackson MA, Pallister T, Steves
CJ, Spector TD and Valdes AM: Gut microbiome diversity and
high-fibre intake are related to lower long-term weight gain. Int J
Obes (Lond). 41:1099–1105. 2017. View Article : Google Scholar : PubMed/NCBI
|
36
|
Nadal I, Santacruz A, Marcos A, Warnberg
J, Garagorri JM, Moreno LA, Martin-Matillas M, Campoy C, Martí A,
Moleres A, et al: Shifts in clostridia, bacteroides and
immunoglobulin-coating fecal bacteria associated with weight loss
in obese adolescents. Int J Obes (Lond). 33:758–767. 2009.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Flint HJ, Duncan SH, Scott KP and Louis P:
Interactions and competition within the microbial community of the
human colon: Links between diet and health. Environ Microbiol.
9:1101–1111. 2007. View Article : Google Scholar : PubMed/NCBI
|
38
|
Baothman OA, Zamzami MA, Taher I, Abubaker
J and Abu-Farha M: The role of gut microbiota in the development of
obesity and diabetes. Lipids Health Dis. 15:1082016. View Article : Google Scholar : PubMed/NCBI
|
39
|
Xu J, Bjursell MK, Himrod J, Deng S,
Carmichael LK, Chiang HC, Hooper LV and Gordon JI: A genomic view
of the human-bacteroides thetaiotaomicron symbiosis. Science.
299:2074–2076. 2003. View Article : Google Scholar : PubMed/NCBI
|
40
|
Graessler J, Qin Y, Zhong H, Zhang J,
Licinio J, Wong ML, Xu A, Chavakis T, Bornstein AB,
Ehrhart-Bornstein M, et al: Metagenomic sequencing of the human gut
microbiome before and after bariatric surgery in obese patients
with type 2 diabetes: Correlation with inflammatory and metabolic
parameters. Pharmacogenomics J. 13:514–522. 2013. View Article : Google Scholar : PubMed/NCBI
|
41
|
Santacruz A, Collado MC, García-Valdés L,
Segura MT, Martín-Lagos JA, Anjos T, Martí-Romero M, Lopez RM,
Florido J, Campoy C and Sanz Y: Gut microbiota composition is
associated with body weight, weight gain and biochemical parameters
in pregnant women. Br J Nutr. 104:83–92. 2010. View Article : Google Scholar : PubMed/NCBI
|
42
|
Schwiertz A, Taras D, Schäfer K, Beijer S,
Bos NA, Donus C and Hardt PD: Microbiota and SCFA in lean and
overweight healthy subjects. Obesity (Silver Spring). 18:190–195.
2010. View Article : Google Scholar : PubMed/NCBI
|
43
|
Duncan SH, Belenguer A, Holtrop G,
Johnstone AM, Flint HJ and Lobley GE: Reduced dietary intake of
carbohydrates by obese subjects results in decreased concentrations
of butyrate and butyrate-producing bacteria in feces. Appl Environ
Microbiol. 73:1073–1078. 2007. View Article : Google Scholar : PubMed/NCBI
|
44
|
Cani PD, Neyrinck AM, Fava F, Knauf C,
Burcelin RG, Tuohy KM, Gibson GR and Delzenne NM: Selective
increases of bifidobacteria in gut microflora improve
high-fat-diet-induced diabetes in mice through a mechanism
associated with endotoxaemia. Diabetologia. 50:2374–2383. 2007.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Kim MS and Bae JW: Spatial disturbances in
altered mucosal and luminal gut viromes of diet-induced obese mice.
Environ Microbiol. 18:1498–1510. 2016. View Article : Google Scholar : PubMed/NCBI
|
46
|
Del Chierico F, Nobili V, Vernocchi P,
Russo A, Stefanis C, Gnani D, Furlanello C, Zandonà A, Paci P,
Capuani G, et al: Gut microbiota profiling of pediatric
nonalcoholic fatty liver disease and obese patients unveiled by an
integrated meta-omics-based approach. Hepatology. 65:451–464. 2017.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Furet JP, Kong LC, Tap J, Poitou C,
Basdevant A, Bouillot JL, Mariat D, Corthier G, Doré J, Henegar C,
et al: Differential adaptation of human gut microbiota to bariatric
surgery-induced weight loss: Links with metabolic and low-grade
inflammation markers. Diabetes. 59:3049–3057. 2010. View Article : Google Scholar : PubMed/NCBI
|
48
|
Wang K, Lu W, Tu Q, Ge Y, He J, Zhou Y,
Gou Y, Van Nostrand JD, Qin Y, Li J, et al: Preliminary analysis of
salivary microbiome and their potential roles in oral lichen
planus. Sci Rep. 6:229432016. View Article : Google Scholar : PubMed/NCBI
|
49
|
Everard A, Belzer C, Geurts L, Ouwerkerk
JP, Druart C, Bindels LB, Guiot Y, Derrien M, Muccioli GG, Delzenne
NM, et al: Cross-talk between Akkermansia muciniphila and
intestinal epithelium controls diet-induced obesity. Proc Natl Acad
Sci USA. 110:9066–9071. 2013. View Article : Google Scholar : PubMed/NCBI
|
50
|
Shin NR, Lee JC, Lee HY, Kim MS, Whon TW,
Lee MS and Bae JW: An increase in the Akkermansia spp.
population induced by metformin treatment improves glucose
homeostasis in diet-induced obese mice. Gut. 63:727–735. 2014.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Liou AP, Paziuk M, Luevano JM Jr,
Machineni S, Turnbaugh PJ and Kaplan LM: Conserved shifts in the
gut microbiota due to gastric bypass reduce host weight and
adiposity. Sci Transl Med. 5:178ra142013. View Article : Google Scholar
|
52
|
Yan M, Song MM, Bai RX, Cheng S and Yan
WM: Effect of Roux-en-Y gastric bypass surgery on intestinal
Akkermansia muciniphila. World J Gastrointest Surg.
8:301–307. 2016. View Article : Google Scholar : PubMed/NCBI
|