1
|
Creemers EE and Pinto YM: Molecular
mechanisms that control interstitial fibrosis in the
pressure-overloaded heart. Cardiovasc Res. 89:265–272. 2011.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Kong P, Christia P and Frangogiannis NG:
The pathogenesis of cardiac fibrosis. Cell Mol Life Sci.
71:549–574. 2014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Bar A, Cies J, Stapleton K, Tauber D,
Chopra A and Shore PM: Acetazolamide therapy for metabolic
alkalosis in critically ill pediatric patients. Pediatr Crit Care
Med. 16:e34–e40. 2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Fontana V, Santinelli S, Internullo M,
Marinelli P, Sardo L, Alessandrini G, Borgognoni L, Ferrazza AM,
Bonini M and Palange P: Effect of acetazolamide on post-NIV
metabolic alkalosis in acute exacerbated COPD patients. Eur Rev Med
Pharmacol Sci. 20:37–43. 2016.PubMed/NCBI
|
5
|
Bremer AM, Yamada K and West CR: Ischemic
cerebral edema in primates: Effects of acetazolamide, phenytoin,
sorbitol, dexamethasone, and methylprednisolone on brain water and
electrolytes. Neurosurgery. 6:149–154. 1980. View Article : Google Scholar : PubMed/NCBI
|
6
|
Apostolo A, Agostoni P, Contini M,
Antonioli L and Swenson ER: Acetazolamide and inhaled carbon
dioxide reduce periodic breathing during exercise in patients with
chronic heart failure. J Card Fail. 20:278–288. 2014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Li XJ, Xiang Y, Ma B and Qi XQ: Effects of
acetazolamide combined with or without NaHCO3 on
suppressing neoplasm growth, metastasis and aquaporin-1 (AQP1)
protein expression. Int J Mol Sci. 8:229–240. 2007. View Article : Google Scholar
|
8
|
Lin PT, Chen WH, Zheng H, Lai ZM and Zhang
LC: Involvement of AQP 1 in the cardio-protective effect of
remifentanil post-conditioning in ischemia/reperfusion rats. Int J
Clin Exp Med. 8:12736–12745. 2015.PubMed/NCBI
|
9
|
Dobaczewski M, Chen W and Frangogiannis
NG: Transforming growth factor (TGF)-β signaling in cardiac
remodeling. J Mol Cell Cardiol. 51:600–606. 2011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Wu M, Han M, Li J, Xu X, Li T, Que L, Ha
T, Li C, Chen Q and Li Y: 17beta-estradiol inhibits angiotensin
II-induced cardiac myofibroblast differentiation. Eur J Pharmacol.
616:155–159. 2009. View Article : Google Scholar : PubMed/NCBI
|
11
|
Rosenkranz S, Flesch M, Amann K, Haeuseler
C, Kilter H, Seeland U, Schlüter KD and Böhm M: Alterations of
beta-adrenergic signaling and cardiac hypertrophy in transgenic
mice overexpressing TGF-beta(1). Am J Physiol Heart Circ Physiol.
283:H1253–H1262. 2002. View Article : Google Scholar : PubMed/NCBI
|
12
|
Kuwahara F, Kai H, Tokuda K, Kai M,
Takeshita A, Egashira K and Imaizumi T: Transforming growth
factor-beta function blocking prevents myocardial fibrosis and
diastolic dysfunction in pressure-overloaded rats. Circulation.
106:130–135. 2002. View Article : Google Scholar : PubMed/NCBI
|
13
|
Miller AD and Tyagi SC: Mutation in
collagen gene induces cardiomyopathy in transgenic mice. J Cell
Biochem. 85:259–267. 2002. View Article : Google Scholar : PubMed/NCBI
|
14
|
Bujak M and Frangogiannis NG: The role of
TGF-beta signaling in myocardial infarction and cardiac remodeling.
Cardiovasc Res. 74:184–195. 2007. View Article : Google Scholar : PubMed/NCBI
|
15
|
Lei B, Hitomi H, Mori T, Nagai Y, Deguchi
K, Mori H, Masaki T, Nakano D, Kobori H, Kitaura Y, et al: Effect
of efonidipine on TGF-β1-induced cardiac fibrosis through
Smad2-dependent pathway in rat cardiac fibroblasts. J Pharmacol
Sci. 117:98–105. 2011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Huang XR, Chung AC, Yang F, Yue W, Deng C,
Lau CP, Tse HF and Lan HY: Smad3 mediates cardiac inflammation and
fibrosis in angiotensin II-induced hypertensive cardiac remodeling.
Hypertension. 55:1165–1171. 2010. View Article : Google Scholar : PubMed/NCBI
|
17
|
Wei LH, Huang XR, Zhang Y, Li YQ, Chen HY,
Yan BP, Yu CM and Lan HY: Smad7 inhibits angiotensin II-induced
hypertensive cardiac remodelling. Cardiovasc Res. 99:665–673. 2013.
View Article : Google Scholar : PubMed/NCBI
|