1
|
Singer M, Deutschman CS, Seymour CW,
Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche
JD, Coopersmith CM, et al: The third international consensus
definitions for sepsis and septic shock (sepsis-3). JAMA.
315:801–810. 2016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Dellinger RP, Levy MM, Rhodes A, Annane D,
Gerlach H, Opal SM, Sevransky JE, Sprung CL, Douglas IS, Jaeschke
R, et al: Surviving sepsis campaign: International guidelines for
management of severe sepsis and septic shock: 2012. Crit Care Med.
41:580–637. 2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Dombrovskiy VY, Martin AA, Sunderram J and
Paz HL: Rapid increase in hospitalization and mortality rates for
severe sepsis in the United States: A trend analysis from 1993 to
2003. Crit Care Med. 35:1244–1250. 2007. View Article : Google Scholar : PubMed/NCBI
|
4
|
Martin-Loeches I, Levy MM and Artigas A:
Management of severe sepsis: Advances, challenges, and current
status. Drug Des Devel Ther. 9:2079–2088. 2015. View Article : Google Scholar : PubMed/NCBI
|
5
|
Sagy M, Al-Qaqaa Y and Kim P: Definitions
and pathophysiology of sepsis. Curr Probl Pediatr Adolesc Health
Care. 43:260–263. 2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Gotts JE and Matthay MA: Sepsis:
Pathophysiology and clinical management. BMJ. 353:i15852016.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Vincent JL, Marshall JC, Namendys-Silva
SA, Francois B, Martin-Loeches I, Lipman J, Reinhart K, Antonelli
M, Pickkers P, Njimi H, et al: Assessment of the worldwide burden
of critical illness: The intensive care over nations (ICON) audit.
Lancet Respir Med. 2:380–386. 2014. View Article : Google Scholar : PubMed/NCBI
|
8
|
Adhikari NK, Fowler RA, Bhagwanjee S and
Rubenfeld GD: Critical care and the global burden of critical
illness in adults. Lancet. 376:1339–1346. 2010. View Article : Google Scholar : PubMed/NCBI
|
9
|
Torio CM and Moore BJ: National inpatient
hospital costs: The most expensive conditions by payer, 2013. HCUP
Statistical Brief #204. Agency for Healthcare Research and Quality;
Rockville, MD: 2016, https://www.hcup-us.ahrq.gov/reports/statbriefs/sb204-Most-ExpensiveHospital-Conditions.jspApril
28–2016
|
10
|
Angus DC and van der Poll T: Severe sepsis
and septic shock. N Engl J Med. 369:840–851. 2013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Blanco J, Muriel-Bombin A, Sagredo V,
Taboada F, Gandia F, Tamayo L, Collado J, Garcia-Labattut A,
Carriedo D, Valledor M, et al: Incidence, organ dysfunction and
mortality in severe sepsis: A Spanish multicentre study. Crit Care.
12:R1582008. View
Article : Google Scholar : PubMed/NCBI
|
12
|
Nesseler N, Launey Y, Aninat C, Morel F,
Malledant Y and Seguin P: Clinical review: The liver in sepsis.
Crit Care. 16:2352012. View
Article : Google Scholar : PubMed/NCBI
|
13
|
Brun-Buisson C, Meshaka P, Pinton P and
Vallet B; EPISEPSIS Study Group, : EPISEPSIS: A reappraisal of the
epidemiology and outcome of severe sepsis in French intensive care
units. Intensive Care Med. 30:580–588. 2004. View Article : Google Scholar : PubMed/NCBI
|
14
|
Bakker J, Grover R, McLuckie A, Holzapfel
L, Andersson J, Lodato R, Watson D, Grossman S, Donaldson J and
Takala J: Administration of the nitric oxide synthase inhibitor
NG-methyl-L-arginine hydrochloride (546C88) by intravenous infusion
for up to 72 hours can promote the resolution of shock in patients
with severe sepsis: Results of a randomized, double-blind,
placebo-controlled multicenter study (study no. 144-002). Crit Care
Med. 32:1–12. 2004. View Article : Google Scholar : PubMed/NCBI
|
15
|
Bellou A, Schaub B, Ting L and Finn PW:
Toll receptors modulate allergic responses: Interaction with
dendritic cells, T cells and mast cells. Curr Opin Allergy Clin
Immunol. 3:487–494. 2003. View Article : Google Scholar : PubMed/NCBI
|
16
|
Biswas SK and Lopez-Collazo E: Endotoxin
tolerance: New mechanisms, molecules and clinical significance.
Trends Immunol. 30:475–487. 2009. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zhang S, Yang N, Ni S, Li W, Xu L, Dong P
and Lu M: Pretreatment of lipopolysaccharide (LPS) ameliorates
D-GalN/LPS induced acute liver failure through TLR4 signaling
pathway. Int J Clin Exp Pathol. 7:6626–6634. 2014.PubMed/NCBI
|
18
|
Zhang YP, Pan CS, Yan L, Liu YY, Hu BH,
Chang X, Li Q, Huang DD, Sun HY, Fu G, et al: Catalpol restores
LPS-elicited rat microcirculation disorder by regulation of a
network of signaling involving inhibition of TLR-4 and SRC. Am J
Physiol Gastrointest Liver Physiol. 311:G1091–G1104. 2016.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Tissieres P, Dunn-Siegrist I, Schappi M,
Elson G, Comte R, Nobre V and Pugin J: Soluble MD-2 is an
acute-phase protein and an opsonin for Gram-negative bacteria.
Blood. 111:2122–2131. 2008. View Article : Google Scholar : PubMed/NCBI
|
20
|
Poltorak A, He X, Smirnova I, Liu MY, Van
Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, et al:
Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: Mutations
in Tlr4 gene. Science. 282:2085–2088. 1998. View Article : Google Scholar : PubMed/NCBI
|
21
|
Reymond A, Meroni G, Fantozzi A, Merla G,
Cairo S, Luzi L, Riganelli D, Zanaria E, Messali S, Cainarca S, et
al: The tripartite motif family identifies cell compartments. EMBO
J. 20:2140–2151. 2001. View Article : Google Scholar : PubMed/NCBI
|
22
|
Hatakeyama S: TRIM proteins and cancer.
Nat Rev Cancer. 11:792–804. 2011. View
Article : Google Scholar : PubMed/NCBI
|
23
|
Gack MU, Shin YC, Joo CH, Urano T, Liang
C, Sun L, Takeuchi O, Akira S, Chen Z, Inoue S and Jung JU: TRIM25
RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated
antiviral activity. Nature. 446:916–920. 2007. View Article : Google Scholar : PubMed/NCBI
|
24
|
Miyajima N, Maruyama S, Bohgaki M, Kano S,
Shigemura M, Shinohara N, Nonomura K and Hatakeyama S: TRIM68
regulates ligand-dependent transcription of androgen receptor in
prostate cancer cells. Cancer Res. 68:3486–3494. 2008. View Article : Google Scholar : PubMed/NCBI
|
25
|
Kikuchi M, Okumura F, Tsukiyama T,
Watanabe M, Miyajima N, Tanaka J, Imamura M and Hatakeyama S:
TRIM24 mediates ligand-dependent activation of androgen receptor
and is repressed by a bromodomain-containing protein, BRD7, in
prostate cancer cells. Biochim Biophys Acta. 1793:1828–1836. 2009.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Institute of Laboratory Animal Resources
(U.S.) Committee on Care Use of Laboratory Animals National
Institutes of Health (U.S.) Division of Research Resources. Guide
for the Care and Use of Laboratory Animals. NIH Publication. pp.
85–23. U.S. Dept. of Health and Human Services, Public Health
Service, National Insititutes of Health; Bethesda, MD: 1985
|
27
|
National Research Council (US) Institute
for Laboratory Animal Research: Guide for the Care and Use of
Laboratory Animals. National Academies Press (US); Washington, DC:
1996
|
28
|
Kawakami T, Koike A and Amano F: Induction
of different activated phenotypes of mouse peritoneal macrophages
grown in different tissue culture media. Cytotechnology.
69:631–642. 2017. View Article : Google Scholar : PubMed/NCBI
|
29
|
Awasthi A, Rathore G, Sood N, Khan MY and
Lakra WS: Establishment of a leukocyte cell line derived from
peritoneal macrophages of fish, Labeo rohita (Hamilton, 1822).
Cytotechnology. 67:85–96. 2015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Rittirsch D, Huber-Lang MS, Flierl MA and
Ward PA: Immunodesign of experimental sepsis by cecal ligation and
puncture. Nat Protoc. 4:31–36. 2009. View Article : Google Scholar : PubMed/NCBI
|
31
|
Lemaitre E, Allee C, Vabret A, Eterradossi
N and Brown PA: Single reaction, real time RT-PCR detection of all
known avian and human metapneumoviruses. J Virol Methods.
251:61–68. 2018. View Article : Google Scholar : PubMed/NCBI
|
32
|
Ott LE and Carson S: Immunological tools:
Engaging students in the use and analysis of flow cytometry and
enzyme-linked immunosorbent assay (ELISA). Biochem Mol Biol Educ.
42:382–397. 2014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Beh BK, Mohamad NE, Yeap SK, Ky H, Boo SY,
JYH C, Tan SW, Ho WY, Sharifuddin SA, Long K and Alitheen NB:
Anti-obesity and anti-inflammatory effects of synthetic acetic acid
vinegar and Nipa vinegar on high-fat-diet-induced obese mice. Sci
Rep. 7:66642017. View Article : Google Scholar : PubMed/NCBI
|
34
|
Yamashita H: Biological function of acetic
acid-improvement in obesity and glucose tolerance by acetic acid in
type 2 diabetic rats. Crit Rev Food Sci Nutr. 56:S171–S175. 2016.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Mohamad NE, Yeap SK, Lim KL, Yusof HM, Beh
BK, Tan SW, Ho WY, Sharifuddin SA, Jamaluddin A, Long K, et al:
Antioxidant effects of pineapple vinegar in reversing of
paracetamol-induced liver damage in mice. Chin Med. 10:32015.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Beh BK, Mohamad NE, Yeap SK, Lim KL, Wang
YH, Yusof HM, Sharifuddin SA, Jamaluddin A, Long K and Alitheen NB:
Polyphenolic profiles and the in vivo antioxidant effect of nipa
vinegar on paracetamol induced liver damage. RSC Advance.
6:63304–63313. 2016. View Article : Google Scholar
|
37
|
Ouchi N and Walsh K: Adiponectin as an
anti-inflammatory factor. Clin Chim Acta. 380:24–30. 2007.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Noguchi K, Okumura F, Takahashi N, Kataoka
A, Kamiyama T, Todo S and Hatakeyama S: TRIM40 promotes neddylation
of IKKgamma and is downregulated in gastrointestinal cancers.
Carcinogenesis. 32:995–1004. 2011. View Article : Google Scholar : PubMed/NCBI
|
39
|
Jekarl DW, Kim JY, Lee S, Kim M, Kim Y,
Han K, Woo SH and Lee WJ: Diagnosis and evaluation of severity of
sepsis via the use of biomarkers and profiles of 13 cytokines: A
multiplex analysis. Clin Chem Lab Med. 53:575–581. 2015. View Article : Google Scholar : PubMed/NCBI
|
40
|
Liang Y, Li X, Zhang X, Li Z, Wang L, Sun
Y, Liu Z and Ma X: Elevated levels of plasma TNF-alpha are
associated with microvascular endothelial dysfunction in patients
with sepsis through activating the NF-kappaB and p38
mitogen-activated protein kinase in endothelial cells. Shock.
41:275–281. 2014. View Article : Google Scholar : PubMed/NCBI
|
41
|
Khakpour S, Wilhelmsen K and Hellman J:
Vascular endothelial cell Toll-like receptor pathways in sepsis.
Innate Immun. 21:827–846. 2015. View Article : Google Scholar : PubMed/NCBI
|
42
|
Chantratita N, Tandhavanant S, Seal S,
Wikraiphat C, Wongsuvan G, Ariyaprasert P, Suntornsut P,
Teerawattanasook N, Jutrakul Y, Srisurat N, et al: TLR4 genetic
variation is associated with inflammatory responses in
Gram-positive sepsis. Clin Microbiol Infect. 23:47.e1–47.e10. 2017.
View Article : Google Scholar
|
43
|
Chan CC, Lee KC, Huang YH, Chou CK, Lin HC
and Lee FY: Regulation by resveratrol of the cellular factors
mediating liver damage and regeneration after acute toxic liver
injury. J Gastroenterol Hepatol. 29:603–613. 2014. View Article : Google Scholar : PubMed/NCBI
|
44
|
Weighardt H and Holzmann B: Role of
Toll-like receptor responses for sepsis pathogenesis.
Immunobiology. 212:715–722. 2007. View Article : Google Scholar : PubMed/NCBI
|
45
|
Tian Y, Li Z, Shen B, Zhang Q and Feng H:
Protective effects of morin on
lipopolysaccharide/d-galactosamine-induced acute liver injury by
inhibiting TLR4/NF-kappaB and activating Nrf2/HO-1 signaling
pathways. Int Immunopharmacol. 45:148–155. 2017. View Article : Google Scholar : PubMed/NCBI
|
46
|
Feng H, Chen J, Wang H, Cheng Y, Zou Z,
Zhong Q and Xu J: Roflumilast reverses polymicrobial sepsis-induced
liver damage by inhibiting inflammation in mice. Lab Invest.
97:1008–1019. 2017. View Article : Google Scholar : PubMed/NCBI
|