1
|
Schwei MJ, Honore P, Rogers SD,
Salak-Johnson JL, Finke MP, Ramnaraine ML, Clohisy DR and Mantyh
PW: Neurochemical and cellular reorganization of the spinal cord in
a murine model of bone cancer pain. J Neurosci. 19:10886–10897.
1999. View Article : Google Scholar : PubMed/NCBI
|
2
|
Honoré P, Schwei J, Rogers SD,
Salak-Johnson JL, Finke MP, Ramnaraine ML, Clohisy DR and Mantyh
PW: Cellular and neurochemical remodeling of the spinal cord in
bone cancer pain. Prog Brain Res. 129:389–397. 2000. View Article : Google Scholar : PubMed/NCBI
|
3
|
Muralidharan A, Wyse BD and Smith MT:
Optimization and characterization of a rat model of prostate
cancer-induced bone pain using behavioral, pharmacological,
radiological, histological and immunohistochemical methods.
Pharmacol Biochem Behav. 106:33–46. 2013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Menéndez L, Lastra A, Fresno MF, Llames S,
Meana A, Hidalgo A and Baamonde A: Initial thermal heat hypoalgesia
and delayed hyperalgesia in a murine model of bone cancer pain.
Brain Res. 969:102–109. 2003. View Article : Google Scholar : PubMed/NCBI
|
5
|
Medhurst SJ, Walker K, Bowes M, Kidd BL,
Glatt M, Muller M, Hattenberger M, Vaxelaire J, O'Reilly T,
Wotherspoon G, et al: A rat model of bone cancer pain. Pain.
96:129–140. 2002. View Article : Google Scholar : PubMed/NCBI
|
6
|
Yang Y, Li H, Li TT, Luo H, Gu XY, Lü N,
Ji RR and Zhang YQ: Delayed activation of spinal microglia
contributes to the maintenance of bone cancer pain in female Wistar
rats via P2X7 receptor and IL-18. J Neurosci. 35:7950–7963. 2015.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Liu Y, Liang Y, Hou B, Liu M, Yang X, Liu
C, Zhang J, Zhang W, Ma Z and Gu X: The inhibitor of
calcium/calmodulin-dependent protein kinase II KN93 attenuates bone
cancer pain via inhibition of KIF17/NR2B trafficking in mice.
Pharmacol Biochem Behav. 124:19–26. 2014. View Article : Google Scholar : PubMed/NCBI
|
8
|
Mao-Ying QL, Wang XW, Yang CJ, Li X, Mi
WL, Wu GC and Wang YQ: Robust spinal neuroinflammation mediates
mechanical allodynia in Walker 256 induced bone cancer rats. Mol
Brain. 5:162012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Gum SI, Rahman MK, Won JS and Cho MK: A
distinctive pattern of beauveria bassiana-biotransformed
ginsenoside products triggers mitochondria/FasL-mediated apoptosis
in colon cancer cells. Phytother Res. 30:136–143. 2016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Lu C, Shi Z, Dong L, Lv J, Xu P, Li Y, Qu
L and Liu X: Exploring the effect of ginsenoside Rh1 in a sleep
deprivation-induced mouse memory impairment model. Phytother Res.
31:763–770. 2017. View
Article : Google Scholar : PubMed/NCBI
|
11
|
Kezhu W, Pan X, Cong L, Liming D, Beiyue
Z, Jingwei L, Yanyan Y and Xinmin L: Effects of ginsenoside Rg1 on
learning and memory in a reward-directed instrumental conditioning
task in chronic restraint stressed rats. Phytother Res. 31:81–89.
2017. View
Article : Google Scholar : PubMed/NCBI
|
12
|
Siddiqi MH, Siddiqi MZ, Kang S, Noh HY,
Ahn S, Simu SY, Aziz MA, Sathishkumar N, Jiménez Pérez ZE and Yang
DC: Inhibition of osteoclast differentiation by ginsenoside Rg3 in
RAW264.7 cells via RANKL, JNK and p38 MAPK pathways through a
modulation of cathepsin K: An in silico and in vitro study.
Phytother Res. 29:1286–1294. 2015. View
Article : Google Scholar : PubMed/NCBI
|
13
|
Chen W, Guo Y, Yang W, Zheng P, Zeng J and
Tong W: Protective effect of ginsenoside Rb1 on integrity of
blood-brain barrier following cerebral ischemia. Exp Brain Res.
233:2823–2831. 2015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Ke L, Guo W, Xu J, Zhang G, Wang W and
Huang W: Ginsenoside Rb1 attenuates activated microglia-induced
neuronal damage. Neural Regen Res. 9:252–259. 2014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Jang M, Lee MJ, Choi JH, Kim EJ, Nah SY,
Kim HJ, Lee S, Lee SW, Kim YO and Cho IH: Ginsenoside Rb1
attenuates acute inflammatory nociception by inhibition of neuronal
ERK phosphorylation by regulation of the Nrf2 and NF-κB pathways. J
Pain. 17:282–297. 2016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Kim IJ, Park CH, Lee SH and Yoon MH: The
role of spinal adrenergic receptors on the antinociception of
ginsenosides in a rat postoperative pain model. Korean J
Anesthesiol. 65:55–60. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Ahn EJ, Choi GJ, Kang H, Baek CW, Jung YH,
Woo YC and Bang SR: Antinociceptive effects of ginsenoside Rg3 in a
rat model of incisional pain. Eur Surg Res. 57:211–223. 2016.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Yoon MH, Huang LJ, Choi JI, Lee HG, Kim WM
and Kim CM: Antinociceptive effect of intrathecal ginsenosides
through alpha-2 adrenoceptors in the formalin test of rats. Br J
Anaesth. 106:371–379. 2011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Yoon MH, Kim WM, Lee HG, Choi JI, Kim YO
and Song JA: Analgesic effect of intrathecal ginsenosides in a
murine bone cancer pain. Korean J Pain. 23:230–235. 2010.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Hu S, Mao-Ying QL, Wang J, Wang ZF, Mi WL,
Wang XW, Jiang JW, Huang YL, Wu GC and Wang YQ: Lipoxins and
aspirin-triggered lipoxin alleviate bone cancer pain in association
with suppressing expression of spinal proinflammatory cytokines. J
Neuroinflammation. 9:2782012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Song H, Han Y, Pan C, Deng X, Dai W, Hu L,
Jiang C, Yang Y, Cheng Z, Li F, et al: Activation of adenosine
monophosphate-activated protein kinase suppresses neuroinflammation
and ameliorates bone cancer pain: Involvement of inhibition on
mitogen-activated protein kinase. Anesthesiology. 123:1170–1185.
2015. View Article : Google Scholar : PubMed/NCBI
|
22
|
Hu XF, He XT, Zhou KX, Zhang C, Zhao WJ,
Zhang T, Li JL, Deng JP and Dong YL: The analgesic effects of
triptolide in the bone cancer pain rats via inhibiting the
upregulation of HDACs in spinal glial cells. J Neuroinflammation.
14:2132017. View Article : Google Scholar : PubMed/NCBI
|
23
|
Pevida M, González-Rodríguez S, Lastra A,
García-Suárez O, Hidalgo A, Menéndez L and Baamonde A: Involvement
of spinal chemokine CCL2 in the hyperalgesia evoked by bone cancer
in mice: A role for astroglia and microglia. Cell Mol Neurobiol.
34:143–156. 2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Bu H, Shu B, Gao F, Liu C, Guan X, Ke C,
Cao F, Hinton AO Jr, Xiang H, Yang H, et al: Spinal IFN-γ-induced
protein-10 (CXCL10) mediates metastatic breast cancer-induced bone
pain by activation of microglia in rat models. Breast Cancer Res
Treat. 143:255–263. 2014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Miao HH, Zhang Y, Ding GN, Hong FX, Dong P
and Tian M: Ginsenoside Rb1 attenuates isoflurane/surgery-induced
cognitive dysfunction via inhibiting neuroinflammation and
oxidative stress. Biomed Environ Sci. 30:363–372. 2017.PubMed/NCBI
|
26
|
Wang Y, Liu J, Zhang Z, Bi P, Qi Z and
Zhang C: Anti-neuroinflammation effect of ginsenoside Rbl in a rat
model of Alzheimer disease. Neurosci Lett. 487:70–72. 2011.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Hang LH, Yang JP, Shao DH, Chen Z and Wang
H: Involvement of spinal PKA/CREB signaling pathway in the
development of bone cancer pain. Pharmacol Rep. 65:710–716. 2013.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Yin Q, Cheng W, Cheng MY, Fan SZ and Shen
W: Intrathecal injection of anti-CX3CR1 neutralizing antibody
delayed and attenuated pain facilitation in rat tibial bone cancer
pain model. Behav Pharmacol. 21:595–601. 2010. View Article : Google Scholar : PubMed/NCBI
|
29
|
Shen W, Hu XM, Liu YN, Han Y, Chen LP,
Wang CC and Song C: CXCL12 in astrocytes contributes to bone cancer
pain through CXCR4-mediated neuronal sensitization and glial
activation in rat spinal cord. J Neuroinflammation. 11:752014.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Hou YL, Tsai YH, Lin YH and Chao JC:
Ginseng extract and ginsenoside Rb1 attenuate carbon
tetrachloride-induced liver fibrosis in rats. BMC Complement Altern
Med. 14:4152014. View Article : Google Scholar : PubMed/NCBI
|
31
|
Huang F, Li YN, Yin F, Wu YT, Zhao DX, Li
Y, Zhang YF and Zhu QS: Ginsenoside Rb1 inhibits neuronal apoptosis
and damage, enhances spinal aquaporin 4 expression and improves
neurological deficits in rats with spinal cord ischemia-reperfusion
injury. Mol Med Rep. 11:3565–3572. 2015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Song ZP, Xiong BR, Guan XH, Cao F,
Manyande A, Zhou YQ, Zheng H and Tian YK: Minocycline attenuates
bone cancer pain in rats by inhibiting NF-κB in spinal astrocytes.
Acta Pharmacol Sin. 37:753–762. 2016. View Article : Google Scholar : PubMed/NCBI
|
33
|
Lu C, Liu Y, Sun B, Sun Y, Hou B, Zhang Y,
Ma Z and Gu X: Intrathecal injection of JWH-015 attenuates bone
cancer pain via time-dependent modification of pro-inflammatory
cytokines expression and astrocytes activity in spinal cord.
Inflammation. 38:1880–1890. 2015. View Article : Google Scholar : PubMed/NCBI
|
34
|
Bloom AP, Jimenez-Andrade JM, Taylor RN,
Castañeda-Corral G, Kaczmarska MJ, Freeman KT, Coughlin KA,
Ghilardi JR, Kuskowski MA and Mantyh PW: Breast cancer-induced bone
remodeling, skeletal pain, and sprouting of sensory nerve fibers. J
Pain. 12:698–711. 2011. View Article : Google Scholar : PubMed/NCBI
|
35
|
Domchek SM, Younger J, Finkelstein DM and
Seiden MV: Predictors of skeletal complications in patients with
metastatic breast carcinoma. Cancer. 89:363–368. 2000. View Article : Google Scholar : PubMed/NCBI
|
36
|
Paice JA and Ferrell B: The management of
cancer pain. CA Cancer J Clin. 61:157–182. 2011. View Article : Google Scholar : PubMed/NCBI
|
37
|
Mantyh P: Bone cancer pain: Causes,
consequences, and therapeutic opportunities. Pain. 154 Suppl
1:S54–S62. 2013. View Article : Google Scholar : PubMed/NCBI
|
38
|
Ahmed T, Raza SH, Maryam A, Setzer WN,
Braidy N, Nabavi SF, de Oliveira MR and Nabavi SM: Ginsenoside Rb1
as a neuroprotective agent: A review. Brain Res Bull. 125:30–43.
2016. View Article : Google Scholar : PubMed/NCBI
|
39
|
Jiang Y, Zhou Z, Meng QT, Sun Q, Su W, Lei
S, Xia Z and Xia ZY: Ginsenoside Rb1 treatment attenuates pulmonary
inflammatory cytokine release and tissue injury following
intestinal ischemia reperfusion injury in mice. Oxid Med Cell
Longev. 2015:8437212015. View Article : Google Scholar : PubMed/NCBI
|
40
|
Wang J, Qiao L, Li S and Yang G:
Protective effect of ginsenoside Rb1 against lung injury induced by
intestinal ischemia-reperfusion in rats. Molecules. 18:1214–1226.
2013. View Article : Google Scholar : PubMed/NCBI
|
41
|
Sun Q, Meng QT, Jiang Y, Liu HM, Lei SQ,
Su WT, Duan WN, Wu Y and Xia ZY and Xia ZY: Protective effect of
ginsenoside Rb1 against intestinal ischemia-reperfusion induced
acute renal injury in mice. PLoS One. 8:e808592013. View Article : Google Scholar : PubMed/NCBI
|
42
|
Wu Y, Yu Y, Szabo A, Han M and Huang XF:
Central inflammation and leptin resistance are attenuated by
ginsenoside Rb1 treatment in obese mice fed a high-fat diet. PLoS
One. 9:e926182014. View Article : Google Scholar : PubMed/NCBI
|
43
|
Cheng W, Wu D, Zuo Q, Wang Z and Fan W:
Ginsenoside Rb1 prevents interleukin-1 beta induced inflammation
and apoptosis in human articular chondrocytes. Int Orthop.
37:2065–2070. 2013. View Article : Google Scholar : PubMed/NCBI
|
44
|
Chen WZ, Liu S, Chen FF, Zhou CJ, Yu J,
Zhuang CL, Shen X, Chen BC and Yu Z: Prevention of postoperative
fatigue syndrome in rat model by ginsenoside Rb1 via
down-regulation of inflammation along the NMDA receptor pathway in
the hippocampus. Biol Pharm Bull. 38:239–247. 2015. View Article : Google Scholar : PubMed/NCBI
|
45
|
Lee JS, Song JH, Sohn NW and Shin JW:
Inhibitory effects of ginsenoside Rb1 on neuroinflammation
following systemic lipopolysaccharide treatment in mice. Phytother
Res. 27:1270–1276. 2013. View Article : Google Scholar : PubMed/NCBI
|
46
|
Na JY, Kim S, Song K, Lim KH, Shin GW, Kim
JH, Kim B, Kwon YB and Kwon J: Anti-apoptotic activity of
ginsenoside Rb1 in hydrogen peroxide-treated chondrocytes:
Stabilization of mitochondria and the inhibition of caspase-3. J
Ginseng Res. 36:242–247. 2012. View Article : Google Scholar : PubMed/NCBI
|
47
|
Ni N, Liu Q, Ren H, Wu D, Luo C, Li P, Wan
JB and Su H: Ginsenoside Rb1 protects rat neural progenitor cells
against oxidative injury. Molecules. 19:3012–3024. 2014. View Article : Google Scholar : PubMed/NCBI
|
48
|
Zhuang CL, Mao XY, Liu S, Chen WZ, Huang
DD, Zhang CJ, Chen BC, Shen X and Yu Z: Ginsenoside Rb1 improves
postoperative fatigue syndrome by reducing skeletal muscle
oxidative stress through activation of the PI3K/Akt/Nrf2 pathway in
aged rats. Eur J Pharmacol. 740:480–487. 2014. View Article : Google Scholar : PubMed/NCBI
|
49
|
Lu JM, Weakley SM, Yang Z, Hu M, Yao Q and
Chen C: Ginsenoside Rb1 directly scavenges hydroxyl radical and
hypochlorous acid. Curr Pharm Des. 18:6339–6347. 2012. View Article : Google Scholar : PubMed/NCBI
|
50
|
Xu J, Zhu MD, Zhang X, Tian H, Zhang JH,
Wu XB and Gao YJ: NFκB-mediated CXCL1 production in spinal cord
astrocytes contributes to the maintenance of bone cancer pain in
mice. J Neuroinflammation. 11:382014. View Article : Google Scholar : PubMed/NCBI
|
51
|
Grenald SA, Doyle TM, Zhang H, Slosky LM,
Chen Z, Largent-Milnes TM, Spiegel S, Vanderah TW and Salvemini D:
Targeting the S1P/S1PR1 axis mitigates cancer-induced bone pain and
neuroinflammation. Pain. 158:1733–1742. 2017. View Article : Google Scholar : PubMed/NCBI
|
52
|
Zhou YQ, Liu Z, Liu ZH, Chen SP, Li M,
Shahveranov A, Ye DW and Tian YK: Interleukin-6: An emerging
regulator of pathological pain. J Neuroinflammation. 13:1412016.
View Article : Google Scholar : PubMed/NCBI
|
53
|
Zhu S, Wang C, Han Y, Song C, Hu X and Liu
Y: Sigma-1 receptor antagonist BD1047 reduces mechanical allodynia
in a rat model of bone cancer pain through the inhibition of spinal
NR1 phosphorylation and microglia activation. Mediators Inflamm.
2015:2650562015. View Article : Google Scholar : PubMed/NCBI
|
54
|
Zhang MY, Liu YP, Zhang LY, Yue DM, Qi DY,
Liu GJ and Liu S: Levo-tetrahydropalmatine attenuates bone cancer
pain by inhibiting microglial cells activation. Mediators Inflamm.
2015:7525122015. View Article : Google Scholar : PubMed/NCBI
|
55
|
Cong Y, Sun K, He X, Li J, Dong Y, Zheng
B, Tan X and Song XJ: A traditional chinese medicine xiao-ai-tong
suppresses pain through modulation of cytokines and prevents
adverse reactions of morphine treatment in bone cancer pain
patients. Mediators Inflamm. 2015:9616352015. View Article : Google Scholar : PubMed/NCBI
|
56
|
Li Q and Zhang X:
Epigallocatechin-3-gallate attenuates bone cancer pain involving
decreasing spinal tumor necrosis factor-α expression in a mouse
model. Int Immunopharmacol. 29:818–823. 2015. View Article : Google Scholar : PubMed/NCBI
|
57
|
Zhou YQ, Liu Z, Liu HQ, Liu DQ, Chen SP,
Ye DW and Tian YK: Targeting glia for bone cancer pain. Expert Opin
Ther Targets. 20:1365–1374. 2016. View Article : Google Scholar : PubMed/NCBI
|
58
|
Gu X, Zheng Y, Ren B, Zhang R, Mei F,
Zhang J and Ma Z: Intraperitoneal injection of thalidomide
attenuates bone cancer pain and decreases spinal tumor necrosis
factor-α expression in a mouse model. Mol Pain. 6:642010.
View Article : Google Scholar : PubMed/NCBI
|