1
|
Zhang Z, Song L, He L, Gao L, Shi Z, Tian
X, Zhang G and Feng F: Experimental study on the expression of
nuclear factor erythroid 2-related factor-2 and superoxide
dismutase during the isoniazid-induced liver injury. Chin J Infect
Dis. 32:80–84. 2014.
|
2
|
Boelsterli UA and Lee KK: Mechanisms of
isoniazid-induced idiosyncratic liver injury: Emerging role of
mitochondrial stress. J Gastroenterol Hepatol. 29:678–687. 2014.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Corbett EL, Watt CJ, Walker N, Maher D,
Williams BG, Raviglione MC and Dye C: The growing burden of
tuberculosis: Global trends and interactions with the HIV epidemic.
Arch Intern Med. 163:1009–1021. 2003. View Article : Google Scholar : PubMed/NCBI
|
4
|
Ramappa V and Aithal GP: Hepatotoxicity
related to anti-tuberculosisdrugs: Mechanisms and management. J
Clin Exp Hepatol. 3:37–49. 2013. View Article : Google Scholar : PubMed/NCBI
|
5
|
Misu H, Takamura T, Matsuzawa N, Shimizu
A, Ota T, Sakurai M, Ando H, Arai K, Yamashita T, Honda M, et al:
Genes involved in oxidative phosphorylation are coordinately
upregulated with fasting hyperglycaemia in livers of patients with
type 2 diabetes. Diabetologia. 50:268–277. 2007. View Article : Google Scholar : PubMed/NCBI
|
6
|
Srinivasula SM, Hegde R, Saleh A, Datta P,
Shiozaki E, Chai J, Lee RA, Robbins PD, Fernandes-Alnemri T, Shi Y
and Alnemri ES: A conserved XIAP-interaction motif in caspase-9 and
Smac/DIABLO regulates caspase activity and apoptosis. Nature.
410:112–116. 2001. View
Article : Google Scholar : PubMed/NCBI
|
7
|
Labbe G, Pessayre D and Fromenty B:
Drug-induced liver injury through mitochondrial dysfunction:
Mechanisms and detection during preclinical safety studies. Fundam
Clin. Pharmacol. 22:335–353. 2008.
|
8
|
Balaban RS, Nemoto S and Finkel T:
Mitochondria, oxidants, and aging. Cell. 120:483–495. 2005.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Chien KR and Karsenty G: Longevity and
lineagea: Toward the integrative biology of degenerative diseases
in heart, muscle, and bone. Cell. 120:533–544. 2005. View Article : Google Scholar : PubMed/NCBI
|
10
|
Tanahashi C, Nakayama A, Yoshida M, Ito M,
Mori N and Hashizume Y: MELAS with the mitochondrial DNA 3243 point
mutation: A neuropathological study. Acta Neuropathol. 99:31–38.
2000. View Article : Google Scholar : PubMed/NCBI
|
11
|
Barthélémy C, Ogier de Baulny H, Diaz J,
Cheval MA, Frachon P, Romero N, Goutieres F, Fardeau M and Lombès
A: Late-onset mitochondrial DNA depletion: DNA copy number,
multiple deletions and compensation. Ann Neurol. 49:607–617. 2001.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Leonard JV and Schapira AH: Mitochondrial
respiratory chain disorders I: Mitochondrial DNA defects. Lancet.
355:299–304. 2000. View Article : Google Scholar : PubMed/NCBI
|
13
|
Yang B, Zhang L, Liu JW and An Y: Study on
the isoniazid induced cellular damage and the expressions of
Fas/Fas ligand of HepG2. Chin J Infect Dis. 30:402–406. 2012.
|
14
|
Yang L and Yu T: Prolonged donor heart
preservation with pinacidil: The role of mitochondria and the
mitochondrial adenosinetriphosphate-sensitive potassium channel. J
Thorac Cardiovasc Surg. 139:1057–1063. 2010. View Article : Google Scholar : PubMed/NCBI
|
15
|
Simon DK, Pankratz N, Kissell DK, Pauciulo
MW, Halter CA, Rudolph A, Pfeiffer RF, Nichols WC and Foroud T;
Parkinson Study Group-PROGENI Investigators, : Maternal inheritance
and mitochondrial DNA variants in familial Parkinson's disease. BMC
Med Genet. 11:532010. View Article : Google Scholar : PubMed/NCBI
|
16
|
Peng TI and Jou MJ: Mitochondrial swelling
and generation of reactive oxygen species induced by
photoirradiation are heterogeneously distributed. Ann N Y Acad Sci.
1011:112–122. 2004. View Article : Google Scholar : PubMed/NCBI
|
17
|
Choksi KB, Boylston WH, Rabek JP, Widger
WR and Papaconstantinou J: Oxidatively damaged proteins of heart
mitochondrial electron transport complexes. Biochim Biophys Acta.
1688:95–101. 2004. View Article : Google Scholar : PubMed/NCBI
|
18
|
Cortes-Rojo C and Rodríguez-Orozco AR:
Importance of oxidative damage on the electon transport chain for
the rational use of mitochondria-targeted antioxidants. Mini Rev
Med Chem. 11:625–632. 2011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Fattman CL, Schaefer LM and Oury TD:
Extracellular superoxide dismutase in biology and medicine. Free
Radie Biol Med. 35:236–256. 2003. View Article : Google Scholar
|
20
|
Clayton DA: Replication of animal
mitochondrial DNA. Cell. 28:693–705. 1982. View Article : Google Scholar : PubMed/NCBI
|
21
|
Bandy B and Davison AJ: Mitochondrial
mutations may increase oxidative stress: Implications for
carcinogenesis and aging? Free Radic Biol Med. 8:523–539. 1990.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Cooke MS, Evans MD, Burd RM, Patel K,
Barnard A, Lunec J and Hutchinson PE: Induction and excretion of
ultraviolet-induced 8-OXO-2′-deoxyguanosine and thymine dimers in
vivo: Implications for PUVA. J Invest DermatoI. 116:281–285. 2001.
View Article : Google Scholar
|
23
|
Ingman M and Gyllensten U: Analysis of the
complete human mtDNA genome: Methodology and inferences for human
evolution. J Hered. 92:454–461. 2001. View Article : Google Scholar : PubMed/NCBI
|
24
|
Tanaka M, Kovalenko SA, Gong JS, Borgeld
HJ, Katsumata K, Hayakawa M, Yoneda M and Ozawa T: Accumulation of
deletions and point mutations in mitochondrial genome in
degenerative diseases. Ann N Y Acad Sci. 786:102–111. 1996.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Berneburg M, Grether-Beck S, Kürten V,
Ruzicka T, Briviba K, Sies H and Krutmann J: Singlet oxygen
mediates the UVA-induced generation of the photoaging-associated
mitochondrial common deletion. J Biol Chem. 274:15345–15395. 1999.
View Article : Google Scholar : PubMed/NCBI
|