1
|
Chang KC, Li L, Sanborn TM, Shieh B,
Lenhart P, Ammar D, LaBarbera DV and Petrash JM: Characterization
of Emodin as a therapeutic agent for diabetic cataract. J Nat Prod.
79:1439–1444. 2016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Tan JS, Wang JJ and Mitchell P: Influence
of diabetes and cardiovascular disease on the long-term incidence
of cataract: The Blue Mountains eye study. Ophthalmic Epidemiol.
15:317–327. 2008. View Article : Google Scholar : PubMed/NCBI
|
3
|
Lu Q, Hao M, Wu W, Zhang N, Isaac AT, Yin
J, Zhu X, Du L and Yin X: Antidiabetic cataract effects of GbE,
rutin and quercetin are mediated by the inhibition of oxidative
stress and polyol pathway. Acta Biochim Pol. 65:35–41. 2018.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Bhadada SV, Vyas VK and Goyal RK:
Protective effect of Tephrosia purpurea in diabetic cataract
through aldose reductase inhibitory activity. Biomed Pharmacother.
83:221–228. 2016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Lee JY, Jeong HS, Lee DY, Sohn HJ and Nam
DH: Early postoperative intraocular pressure stability after
combined 23-gauge sutureless vitrectomy and cataract surgery in
patients with proliferative diabetic retinopathy. Retina.
32:1767–1774. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Takamura Y, Sugimoto Y, Kubo E, Takahashi
Y and Akagi Y: Immunohistochemical study of apoptosis of lens
epithelial cells in human and diabetic rat cataracts. Jpn J
Ophthalmol. 45:559–563. 2001. View Article : Google Scholar : PubMed/NCBI
|
7
|
de Iongh RU, Wederell E, Lovicu FJ and
McAvoy JW: Transforming growth factor-beta-induced
epithelial-mesenchymal transition in the lens: A model for cataract
formation. Cells Tissues Organs. 179:43–55. 2005. View Article : Google Scholar : PubMed/NCBI
|
8
|
Hales AM, Chamberlain CG, Murphy CR and
McAvoy JW: Estrogen protects lenses against cataract induced by
transforming growth factor-beta (TGFbeta). J Exp Med. 185:273–280.
1997. View Article : Google Scholar : PubMed/NCBI
|
9
|
Xu GX, Hu JZ, Zheng WD, Zhang S and Wang
TT: Expression and significance of transforming growth
factor-beta1, matrix metalloproteinase-2 and its inhibitor in lens
epithelial cells of diabetic cataract. Zhonghua Yan Ke Za Zhi.
39:411–414. 2003.(In Chinese). PubMed/NCBI
|
10
|
Nathu Z, Dwivedi DJ, Reddan JR, Sheardown
H, Margetts PJ and West-Mays JA: Temporal changes in MMP mRNA
expression in the lens epithelium during anterior subcapsular
cataract formation. Exp Eye Res. 88:323–330. 2009. View Article : Google Scholar : PubMed/NCBI
|
11
|
Kwon JW, Choi JA and Jee D: Matrix
metalloproteinase-1 and matrix metalloproteinase-9 in the aqueous
humor of diabetic macular edema patients. PLoS One.
11:e01597202016. View Article : Google Scholar : PubMed/NCBI
|
12
|
Dwivedi DJ, Pino G, Banh A, Nathu Z,
Howchin D, Margetts P, Sivak JG and West-Mays JA: Matrix
metalloproteinase inhibitors suppress transforming growth
factor-beta-induced subcapsular cataract formation. Am J Pathol.
168:69–79. 2006. View Article : Google Scholar : PubMed/NCBI
|
13
|
Boscia F, Grattagliano I, Vendemiale G,
Micelli-Ferrari T and Altomare E: Protein oxidation and lens
opacity in humans. Invest Ophthalmol Vis Sci. 41:2461–2465.
2000.PubMed/NCBI
|
14
|
Lindsey ML, Iyer RP, Jung M,
DeLeon-Pennell KY and Ma Y: Matrix metalloproteinases as input and
output signals for post-myocardial infarction remodeling. J Mol
Cell Cardiol. 91:134–140. 2016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Backstrom JR and Tökés ZA: The 84-kDa form
of human matrix metalloproteinase-9 degrades substance P and
gelatin. J Neurochem. 64:1312–1318. 1995. View Article : Google Scholar : PubMed/NCBI
|
16
|
Inoue Y, Abe K, Obata K, Yoshioka T,
Ohmura G, Doh K, Yamamoto K, Hoshiai H and Noda K:
Immunohistochemical studies on matrix metalloproteinase-9 (MMP-9)
and type-IV collagen in endometrial carcinoma. J Obstet Gynaecol
Res. 23:139–145. 1997. View Article : Google Scholar : PubMed/NCBI
|
17
|
Luo D, Guan Q, Wang K, Nguan CYC and Du C:
TGF-β1 stimulates movement of renal proximal tubular epithelial
cells in a three-dimensional cell culture via an autocrine TGF-β2
production. Exp Cell Res. 350:132–139. 2017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Kawarada Y, Inoue Y, Kawasaki F, Fukuura
K, Sato K, Tanaka T, Itoh Y and Hayashi H: TGF-β induces p53/Smads
complex formation in the PAI-1 promoter to activate transcription.
Sci Rep. 6:354832016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Selim S: Frequency and pattern of chronic
complications of diabetes and their association with glycemic
control among adults with type 2 diabetes in Bangladesh. Diabetes
Metab Syndr. 11 (Suppl 1):S329–S332. 2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Akiyode O and Tran C: Overview of ocular
anti-vascular endothelial growth factor therapy in the management
of diabetic eye complications. Diabetes Spectr. 29:44–49. 2016.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Voelker J, Berg PH, Sheetz M, Duffin K,
Shen T, Moser B, Greene T, Blumenthal SS, Rychlik I, Yagil Y, et
al: Anti-TGF-β1 antibody therapy in patients with diabetic
nephropathy. J Am Soc Nephrol. 28:953–962. 2017. View Article : Google Scholar : PubMed/NCBI
|
22
|
Xu MT, Sun S, Zhang L, Xu F, Du SL, Zhang
XD and Wang DW: Diabetes mellitus affects the biomechanical
function of the callus and the expression of TGF-beta1 and BMP2 in
an early stage of fracture healing. Braz J Med Biol Res.
49:e47362016.PubMed/NCBI
|
23
|
Alapure BV, Praveen MR, Gajjar DU,
Vasavada AR, Parmar TJ and Arora AI: Matrix metalloproteinase-2 and
−9 activities in the human lens epithelial cells and serum of
steroid induced posterior subcapsular cataracts. Mol Vis. 18:64–73.
2012.PubMed/NCBI
|
24
|
Dynlacht JR: The role of age, sex and
steroid sex hormones in radiation cataractogenesis. Radiat Res.
180:559–566. 2013. View Article : Google Scholar : PubMed/NCBI
|