1
|
Bhende M, Shetty S, Parthasarathy MK and
Ramya S: Optical coherence tomography: A guide to interpretation of
common macular diseases. Indian J Ophthalmol. 66:20–35. 2018.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Oberwahrenbrock T, Traber GL, Lukas S,
Gabilondo I, Nolan R, Songster C, Balk L, Petzold A, Paul F,
Villoslada P, et al: Multicenter reliability of semiautomatic
retinal layer segmentation using OCT. Neurol Neuroimmunol
Neuroinflamm. 5:e4492018. View Article : Google Scholar : PubMed/NCBI
|
3
|
Waldman AT, Liu GT, Lavery AM, Liu G,
Gaetz W, Aleman TS and Banwell BL: Optical coherence tomography and
visual evoked potentials in pediatric MS. Neurol Neuroimmunol
Neuroinflamm. 4:e3562017. View Article : Google Scholar : PubMed/NCBI
|
4
|
You Y, Graham EC, Shen T, Yiannikas C,
Parratt J, Gupta V, Barton J, Dwyer M, Barnett MH, Fraser CL, et
al: Progressive inner nuclear layer dysfunction in non-optic
neuritis eyes in MS. Neurol Neuroimmunol Neuroinflamm. 5:e4272018.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Bennett J, de Seze J, Lana-Peixoto M,
Palace J, Waldman A, Schippling S, Tenembaum S, Banwell B,
Greenberg B, Levy M, et al: Neuromyelitis optica and multiple
sclerosis: Seeing differences through optical coherence tomography.
Mult Scler. 21:678–688. 2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Wojtkowski M, Srinivasan V, Fujimoto JG,
Ko T, Schuman JS, Kowalczyk A and Duker JS: Three-dimensional
retinal imaging with high-speed ultrahigh-resolution optical
coherence tomography. Ophthalmology. 112:1734–1746. 2005.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Reichel E, Ho J and Duker JS: OCT Units:
Which One Is Right for Me? Review of ophthalmology, Boston.
16:622009.
|
8
|
Roth NM, Saidha S, Zimmermann H, Brandt
AU, Isensee J, Benkhellouf-Rutkowska A, Dornauer M, Kühn AA, Müller
T, Calabresi PA and Paul F: Photoreceptor layer thinning in
idiopathic Parkinson's disease. Mov Disord. 29:1163–1170. 2014.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Topcon, . Optical Coherence Tomography 3D
OCT-2000 Series. http://pdf.medicalexpo.com/pdf/topcon-europe-medical/brochure-topcon-3d-oct-2000-series/77876-75588-_12.html
|
10
|
Larsson J, Zhu M, Sutter F and Gillies MC:
Relation between reduction of foveal thickness and visual acuity in
diabetic macular edema treated with intravitreal triamcinolone. Am
J Ophthalmol. 139:802–806. 2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Ooto S, Hangai M, Sakamoto A, Tomidokoro
A, Araie M, Otani T, Kishi S, Matsushita K, Maeda N, Shirakashi M,
et al: Three-dimensional profile of macular retinal thickness in
normal Japanese eyes. Invest Ophthalmol Vis Sci. 51:465–473. 2010.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Haouchine B, Massin P, Tadayoni R, Erginay
A and Gaudric A: Diagnosis of macular pseudoholes and lamellar
macular holes by optical coherence tomography. Am J Ophthalmol.
138:732–739. 2004. View Article : Google Scholar : PubMed/NCBI
|
13
|
Sadda SR, Wu Z, Walsh AC, Richine L,
Dougall J, Cortez R and LaBree LD: Errors in retinal thickness
measurements obtained by optical coherence tomography.
Ophthalmology. 113:285–293. 2006. View Article : Google Scholar : PubMed/NCBI
|
14
|
Song Y, Lee BR, Shin YW and Lee YJ:
Overcoming segmentation errors in measurements of macular thickness
made by spectral-domain optical coherence tomography. Retina.
32:569–580. 2012. View Article : Google Scholar : PubMed/NCBI
|
15
|
Kim SW, Oh J, Yang KS, Kim YH, Park JW,
Rhim JW and Huh K: Stratus OCT image analysis with spectral-domain
OCT (Topcon 3D OCT Viewer). Br J Ophthalmol. 96:93–98. 2012.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Kim M, Lee SJ, Han J, Yu SY and Kwak HW:
Segmentation error and macular thickness measurements obtained with
spectral-domain optical coherence tomography devices in neovascular
age-related macular degeneration. Indian J Ophthalmol. 61:213–217.
2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Varga BE, Tátrai E, Cabrera DeBuc D and
Somfai GM: The effect of incorrect scanning distance on boundary
detection errors and macular thickness measurements by spectral
domain optical coherence tomography: A cross sectional study. BMC
Ophthalmol. 14:1482014. View Article : Google Scholar : PubMed/NCBI
|
18
|
Ho J, Sull AC, Vuong LN, Chen Y, Liu J,
Fujimoto JG, Schuman JS and Duker JS: Assessment of artifacts and
reproducibility across spectral- and time-domain optical coherence
tomography devices. Ophthalmology. 116:1960–1970. 2009. View Article : Google Scholar : PubMed/NCBI
|
19
|
Tan CS, Cheong KX, Lim LW and Sadda SR:
Comparison of macular choroidal thicknesses from swept source and
spectral domain optical coherence tomography. Br J Ophthalmol.
100:995–999. 2016. View Article : Google Scholar : PubMed/NCBI
|
20
|
Falavarjani KG, Mehrpuya A and
Amirkourjani F: Effect of spectral domain optical coherence
tomography image quality on macular thickness measurements and
error rate. Curr Eye Res. 42:282–286. 2017. View Article : Google Scholar : PubMed/NCBI
|
21
|
de Boer JF, Cense B, Park BH, Pierce MC,
Tearney GJ and Bouma BE: Improved signal-to-noise ratio in
spectral-domain compared with time-domain optical coherence
tomography. Opt Lett. 28:2067–2069. 2003. View Article : Google Scholar : PubMed/NCBI
|
22
|
Sander B, Al-Abiji HA, Kofod M and
Jørgensen TM: Do different spectral domain OCT hardwares measure
the same? Comparison of retinal thickness using third-party
software. Graefes Arch Clin Exp Ophthalmol. 253:1915–1921. 2015.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Krebs I, Falkner-Radler C, Hagen S, Haas
P, Brannath W, Lie S, Ansari-Shahrezaei S and Binder S: Quality of
the threshold algorithm in age-related macular degeneration:
Stratus versus Cirrus OCT. Invest Ophthalmol Vis Sci. 50:995–1000.
2009. View Article : Google Scholar : PubMed/NCBI
|
24
|
Odell D, Dubis AM, Lever JF, Stepien KE
and Carroll J: Assessing errors inherent in OCT-derived macular
thickness maps. J Ophthalmol. 2011:6925742011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Bedell HE: A functional test of foveal
fixation based upon differential cone directional sensitivity.
Vision Res. 20:557–560. 1980. View Article : Google Scholar : PubMed/NCBI
|
26
|
Alshareef RA, Dumpala S, Rapole S,
Januwada M, Goud A, Peguda HK and Chhablani J: Prevalence and
distribution of segmentation errors in macular ganglion cell
analysis of healthy eyes using cirrus HD-OCT. PLoS One.
11:e01553192016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Ray R, Stinnett SS and Jaffe GJ:
Evaluation of image artifact produced by optical coherence
tomography of retinal pathology. Am J Ophthalmol. 139:18–29. 2005.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Bahrami B, Ewe SYP, Hong T, Zhu M, Ong G,
Luo K and Chang A: Influence of retinal pathology on the
reliability of macular thickness measurement: A comparison between
optical coherence tomography devices. Ophthalmic Surg Lasers
Imaging Retina. 48:319–325. 2017. View Article : Google Scholar : PubMed/NCBI
|
29
|
Waldstein SM, Gerendas BS, Montuoro A,
Simader C and Schmidt-Erfurth U: Quantitative comparison of macular
segmentation performance using identical retinal regions across
multiple spectral-domain optical coherence tomography instruments.
Br J Ophthalmol. 99:794–800. 2015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Ho J, Adhi M, Baumal C, Liu J, Fujimoto
JG, Duker JS and Waheed NK: Agreement and reproducibility of
retinal pigment epithelial detachment volumetric measurements
through optical coherence tomography. Retina. 35:467–472. 2015.
View Article : Google Scholar : PubMed/NCBI
|