1
|
Ban CR and Twigg SM: Fibrosis in diabetes
complications: Pathogenic mechanisms and circulating and urinary
markers. Vasc Health Risk Manag. 4:575–596. 2008. View Article : Google Scholar : PubMed/NCBI
|
2
|
Law B, Fowlkes V, Goldsmith JG, Carver W
and Goldsmith EC: Diabetes-induced alterations in the extracellular
matrix and their impact on myocardial function. Microsc Microanal.
18:22–34. 2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Ikeda S, Makino H, Haramoto T, Chikata K,
Kumagai I and Ota Z: Changes in glomerular extracellular matrices
components in diabetic nephropathy. J Diabet Complications.
5:186–188. 1991. View Article : Google Scholar : PubMed/NCBI
|
4
|
Arthur MJ: Fibrogenesis II.
Metalloproteinases and their inhibitors in liver fibrosis. Am J
Physiol Gastrointest Liver Physiol. 279:G245–G249. 2000. View Article : Google Scholar : PubMed/NCBI
|
5
|
Das J, Roy A and Sil PC: Mechanism of the
protective action of taurine in toxin and drug induced organ
pathophysiology and diabetic complications: A review. Food Funct.
3:1251–1264. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Friedman SL: Molecular regulation of
hepatic fibrosis, an integrated cellular response to tissue injury.
J Biol Chem. 275:2247–2250. 2000. View Article : Google Scholar : PubMed/NCBI
|
7
|
Rockey DC: The cell and molecular biology
of hepatic fibrogenesis: Clinical and therapeutic implications.
Clin Liver Dis. 4:319–355. 2000. View Article : Google Scholar : PubMed/NCBI
|
8
|
Wu LL, Cox A, Roe CJ, Dziadek M, Cooper ME
and Gilbert RE: Transforming growth factor beta1 and renal injury
following subtotal nephrectomy in the rat: Role of the
renin-angiotensin system. Kidney Int. 51:1553–1567. 1994.
View Article : Google Scholar
|
9
|
Benyon RC and Iredale JP: Is liver
fibrosis reversible? Gut. 46:443–446. 2000. View Article : Google Scholar : PubMed/NCBI
|
10
|
Friedman SL: Hepatic stellate cells:
Protean, multifunctional, and enigmatic cells of the liver. Physiol
Rev. 88:125–172. 2008. View Article : Google Scholar : PubMed/NCBI
|
11
|
Safadi R and Friedman SL: Hepatic fibrosis
- role of hepatic stellate cell activation. MedGenMed.
4:272002.PubMed/NCBI
|
12
|
Walton KL, Johnson KE and Harrison CA:
Targeting TGF-β mediated SMAD signaling for the prevention of
fibrosis. Front Pharmacol. 8:4612017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Liu T, Wang X, Karsdal MA, Leeming DJ and
Genovese F: Molecular serum markers of liver fibrosis. Biomark
Insights. 7:105–117. 2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Fallatah HI: Noninvasive biomarkers of
liver fibrosis: An overview. Adv Hepatol. 2014:1152014.
|
15
|
Manabe R, Oh-e N and Sekiguchi K:
Alternatively spliced EDA segment regulates fibronectin-dependent
cell cycle progression and mitogenic signal transduction. J Biol
Chem. 274:5919–5924. 1999. View Article : Google Scholar : PubMed/NCBI
|
16
|
Mabuchi A, Mullaney I, Sheard P, Hessian
P, Zimmermann A, Senoo H and Wheatley AM: Role of hepatic stellate
cells in the early phase of liver regeneration in rat: Formation of
tight adhesion to parenchymal cells. Comp Hepatol 1 (3 Suppl).
S292004. View Article : Google Scholar
|
17
|
Ala-Kokko L, Pihlajaniemi T, Myers JC,
Kivirikko KI and Savolainen ER: Gene expression of type I, III, IV
collagens in hepatic fibrosis induced by dimethylnitrosamine in the
rat. Biochem J. 244:75–79. 1987. View Article : Google Scholar : PubMed/NCBI
|
18
|
Yokozawa T, Cho EJ, Rhyu DY, Shibahara N
and Aoyagi K: Glycyrrhizae radix attenuates
peroxynitrite-induced renal oxidative damage through inhibition of
protein nitration. Free Radic Res. 39:203–211. 2005. View Article : Google Scholar : PubMed/NCBI
|
19
|
Mori H, Niwa K, Zheng Q, Yamada Y, Sakata
K and Yoshimi N: Cell proliferation in cancer prevention; effects
of preventive agents on estrogen-related endometrial carcinogenesis
model and on an in vitro model in human colorectal cells. Mutat
Res. 480–481, 201-207. 2001.
|
20
|
Shang H, Cao S, Wang J, Zheng H and
Putheti R: Glabridin from Chinese herb licorice inhibits fatigue in
mice. Afr J Tradit Complement Altern Med. 7:17–23. 2009.PubMed/NCBI
|
21
|
Yokota T, Nishio H, Kubota Y and Mizoguchi
M: The inhibitory effect of glabridin from licorice extracts on
melanogenesis and inflammation. Pigment Cell Res. 11:355–361. 1998.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Choi EM: The licorice root derived
isoflavan glabridin increases the function of osteoblastic MC3T3-E1
cells. Biochem Pharmacol. 70:363–368. 2005. View Article : Google Scholar : PubMed/NCBI
|
23
|
Gnanamoorthy M, Sridharan K, Dhayananth N
and Ramesh Babu NG: Antimicrobial and anticancer potential of
glycyrrhiza glabra. IJERM. 4:2349–2058. 2017.
|
24
|
Jung JC, Lee YH, Kim SH, Kim KJ, Kim KM,
Oh S and Jung YS: Hepatoprotective effect of licorice, the root of
Glycyrrhiza uralensis Fischer, in alcohol induced fatty liver
disease. BMC Complement Altern Med. 16:192016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Wu F, Jin Z and Jin J: Hypoglycemic
effects of glabridin, a polyphenolic flavonoid from licorice, in an
animal model of diabetes mellitus. Mol Med Rep. 7:1278–1282. 2013.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Hui AY, Liew CT, Go MY, Chim AM, Chan HL,
Leung NV and Sung JJ: Quantitative assessment of fibrosis in liver
biopsies from patients with chronic hepatitis B. Liver Int.
24:611–618. 2004. View Article : Google Scholar : PubMed/NCBI
|
27
|
Stinson RA and Hamilton BA: Human liver
plasma membranes contain an enzyme activity that removes membrane
anchor from alkaline phosphatase and converts it to a plasma-like
form. Clin Biochem. 27:49–55. 1994. View Article : Google Scholar : PubMed/NCBI
|
28
|
Wilson PD, Franks LM, Cottell DC and
Benham F: Alkaline phosphatase in mitochondria. Cell Biol Int Rep.
1:85–92. 1977. View Article : Google Scholar : PubMed/NCBI
|
29
|
Jeschke MG: The hepatic response to
thermal injury: Is the liver important for postburn outcomes? Mol
Med. 15:337–351. 2009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Tian Z, Liu H, Su X, Fang Z, Dong Z, Yu C
and Luo K: Role of elevated liver transaminase levels in the
diagnosis of liver injury after blunt abdominal trauma. Exp Ther
Med. 4:255–260. 2012. View Article : Google Scholar : PubMed/NCBI
|
31
|
Giannini EG, Testa R and Savarino V: Liver
enzyme alteration: A guide for clinicians. CMAJ. 172:367–379. 2005.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Shen J, Zhang J, Wen J, Ming Q, Zhang J
and Xu Y: Correlation of serum alanine aminotransferase and
aspartate aminotransferase with coronary heart disease. Int J Clin
Exp Med. 8:4399–4404. 2015.PubMed/NCBI
|
33
|
Schneeberger EE, Arriola MS, Fainboim H,
Schroder T, González J, Baiges D, Luque M, Maldonado Coco JA and
Citera G: Idiophatic inflammatory myophaties: Its association with
liver disorders. Rev Fac Cien Med Univ Nac Cordoba. 69:139–143.
2012.(In Spanish). PubMed/NCBI
|
34
|
Hosseinzadeh H and Nassiri-Asl M:
Pharmacological effects of glycyrrhiza spp. And its bioactive
constituents: Update and review. Phytother Res. 29:1868–1886. 2015.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Bilal HM, Riaz F, Munir K, Saqib K and
Sawa MR: Histological changes in the liver of diabetic rats: A
review of pathogenesis of nonalcoholic fatty liver disease in type
1 diabetes mellitus. Cogent Medicine. 3:12754152016. View Article : Google Scholar
|
36
|
Kawano Y and Cohen DE: Mechanisms of
hepatic triglyceride accumulation in non-alcoholic fatty liver
disease. J Gastroenterol. 48:434–441. 2013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Nakashima O, Kurogi M, Yamaguchi R,
Miyaaki H, Fujimoto M, Yano H, Kumabe T, Hayabuchi N, Hisatomi J,
Sata M and Kojiro M: Unique hypervascular nodules in alcoholic
liver cirrhosis: Identical to focal nodular hyperplasia-like
nodules. J Hepatol. 41:992–998. 2004. View Article : Google Scholar : PubMed/NCBI
|
38
|
Pessayre D, Fromenty B and Mansouri A:
Mitochondrial injury in steatohepatitis. Eur J Gastroenterol
Hepatol. 16:1095–1105. 2004. View Article : Google Scholar : PubMed/NCBI
|
39
|
Crespo J, Cayon A, Fernandez-Gil P,
Hernandez-Guerra M, Mayorga M, Dominguez-Diez A,
Fernandez-Escalante JC and Pons-Romero F: Gene expression of tumor
necrosis factor alpha and TNF-receptors, p55 and p75, in
nonalcoholic steatohepatitis patients. Hepatology. 34:1158–1163.
2001. View Article : Google Scholar : PubMed/NCBI
|
40
|
Sanyal AJ; American Gastroenterological
Association, : AGA technical review on nonalcoholic fatty liver
disease. Gastroenterology. 123:1705–1725. 2002. View Article : Google Scholar : PubMed/NCBI
|
41
|
Bertolani C and Marra F: The role of
adipokines in liver fibrosis. Pathophysiology. 15:91–101. 2008.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Poisson J, Lemoinne S, Boulanger C, Durand
F, Moreau R, Valla D and Rautou PE: Liver sinusoidal endothelial
cells: Physiology and role in liver diseases. J Hepatol.
66:212–227. 2017. View Article : Google Scholar : PubMed/NCBI
|
43
|
Ohno T, Horio F, Tanaka S, Terada M,
Namikawa T and Kitch J: Fatty liver and hyperlipidemia in IDDM
(insulin dependent diabetes mellitus) of streptozotocin treated
shrew. Life Sci. 66:125–131. 2000. View Article : Google Scholar : PubMed/NCBI
|
44
|
Onori P, Morini S, Franchitto A, Sferra R,
Alvaro D and Gaudio E: Hepatic microvascular features in
experimental cirrhosis: A structural and morphometrical study in
CCI4-treated rats. J Hepatol. 33:555–563. 2000. View Article : Google Scholar : PubMed/NCBI
|
45
|
Hynes RO: The extracellular matrix; not
just pretty fibrils. Science. 326:1216–1219. 2010. View Article : Google Scholar
|
46
|
Yerian L: Identifying activated hepatic
stellate cells in chronic and posttransplant recurrent hepatitis C.
Liver Transpl. 14:756–758. 2008. View Article : Google Scholar : PubMed/NCBI
|
47
|
Friedman SL: The virtuosity of hepatic
stellate cells. Gastroenterology. 117:1244–1246. 1999. View Article : Google Scholar : PubMed/NCBI
|
48
|
Inagaki Y and Okazaki I: Emerging insights
into Transforming growth factor beta Smad signal in hepatic
fibrogenesis. Gut. 56:284–292. 2007. View Article : Google Scholar : PubMed/NCBI
|
49
|
Meindl-Beinker NM and Dooley S:
Transforming growth factor-beta and hepatocyte transdifferentiation
in liver fibrogenesis. J Gastroenterol Hepatol. 23 (Suppl
1):S122–S127. 2008. View Article : Google Scholar : PubMed/NCBI
|
50
|
Arauz J, Zarco N, Segovia J, Shibayama M,
Tsutsumi V and Muriel P: Caffeine prevents experimental liver
fibrosis by blocking the expression of TGF-β. Eur J Gastroenterol
Hepatol. 26:164–273. 2014. View Article : Google Scholar : PubMed/NCBI
|
51
|
Gressner AM and Weiskirchen R: Modern
pathogenetic concepts of liver fibrosis suggest stellate cells and
TGF-beta as major players and therapeutic targets. J Cell Mol Med.
10:76–99. 2006. View Article : Google Scholar : PubMed/NCBI
|
52
|
Mosesson MW: Fibrinogen and fibrin and
structure and functions. J Thromb Haemost. 3:1894–1904. 2005.
View Article : Google Scholar : PubMed/NCBI
|
53
|
Gressner OA, Weiskirchen R and Gressner
AM: Biomarkers of liver fibrosis: Clinical translation of molecular
pathogenesis or based on liver dependent malfunction tests. Clin
Chim Acta. 381:107–113. 2007. View Article : Google Scholar : PubMed/NCBI
|
54
|
Kawelke N, Vasel M, Sens C, Au AV, Dooley
S and Nakchbandi IA: Fibronectin protects from excessive liver
fibrosis by modulating the availability of and responsiveness of
stellate cells to active TGF-β. PLoS One. 6:e281812011. View Article : Google Scholar : PubMed/NCBI
|
55
|
Liu XY, Liu RX, Hou F, Cui LJ, Li CY, Chi
C, Yi E, Wen Y and Yin CH: Fibronectin expression is critical for
liver fibrogenesis in vivo and in vitro. Mol Med Rep. 14:3669–3675.
2016. View Article : Google Scholar : PubMed/NCBI
|
56
|
Masarone M, Rosato V, Dallio M, Gravina
AG, Aglitti A, Loguercio C, Federico A and Persico M: Role of
oxidative stress in pathophysiology of nonalcoholic fatty liver
disease. Oxid Med Cell Longev. 2018:95476132018. View Article : Google Scholar : PubMed/NCBI
|
57
|
Meng XM, Chung AC and Lan HY: Role of the
TGF-β/BMP-7/Smad pathways in renal diseases. Clin Sci (Lond).
124:243–254. 2013. View Article : Google Scholar : PubMed/NCBI
|
58
|
Gandhi GR and Sasikumar P: Antidiabetic
effect of Merremia emarginata Burm. F. in streptozotocin
induced diabetic rats. Asian Pac J Trop Biomed. 2:281–286. 2012.
View Article : Google Scholar : PubMed/NCBI
|
59
|
Patanè G, Piro S, Anello M, Rabuazzo AM,
Vigneri R and Purrello F: Exposure to glibenclamide increases rat
beta cells sensitivity to glucose. Br J Pharmacol. 129:887–892.
2000. View Article : Google Scholar : PubMed/NCBI
|
60
|
Oh CS, Kohanim S, Kong FL, Song HC, Huynh
N, Mendez R, Chanda M, Edmund Kim E and Yang DJ: Sulfonylurea
receptor as a target for molecular imaging of pancreas beta cells
with (99m)Tc-DTPA-glipizide. Ann Nucl Med. 26:253–261. 2012.
View Article : Google Scholar : PubMed/NCBI
|
61
|
Petit P and Loubatières-Mariani MM:
Potassium channels of the insulin-secreting B cell. Fundam Clin
Pharmacol. 6:123–134. 1992. View Article : Google Scholar : PubMed/NCBI
|
62
|
Serrano-Martín X, Payares G and
Mendoza-León A: Glibenclamide, a blocker of K+(ATP) channels, shows
antileishmanial activity in experimental murine cutaneous
leishmaniasis. Antimicrob Agents Chemother. 50:4214–4216. 2006.
View Article : Google Scholar : PubMed/NCBI
|
63
|
Abd EI-Ghffar EA: Ameliorative effect of
glabridin, a main component of Glycyrrhiza glaba L. roots in
streptozotocin induced Type I diabetes in male albino rats. Indian
J Tradit Knowle. 15:570–579. 2016.
|