1
|
de Perrot M, Liu M, Waddell TK and
Keshavjee S: Ischemia-reperfusion-induced lung injury. Am J Respir
Crit Care Med. 167:490–511. 2003. View Article : Google Scholar : PubMed/NCBI
|
2
|
Cottini SR, Lerch N, de Perrot M,
Treggiari MM, Spiliopoulos A, Nicod L and Ricou B: Risk factors for
reperfusion injury after lung transplantation. Intensive Care Med.
32:557–563. 2006. View Article : Google Scholar : PubMed/NCBI
|
3
|
Shimamoto A, Pohlman TH, Shomura S,
Tarukawa T, Takao M and Shimpo H: Toll-like receptor 4 mediates
lung ischemia-reperfusion injury. Ann Thorac Surg. 82:2017–2023.
2006. View Article : Google Scholar : PubMed/NCBI
|
4
|
Ambrosio G and Tritto I: Reperfusion
injury: Experimental evidence and clinical implications. Am Heart
J. 138:S69–S75. 1999. View Article : Google Scholar : PubMed/NCBI
|
5
|
Quadri SM, Segall L, de Perrot M, Han B,
Edwards V, Jones N, Waddell TK, Liu M and Keshavjee S: Caspase
inhibition improves ischemia-reperfusion injury after lung
transplantation. Am J Transplant. 5:292–299. 2005. View Article : Google Scholar : PubMed/NCBI
|
6
|
Fischer S, Maclean AA, Liu M, Cardella JA,
Slutsky AS, Suga M, Moreira JF and Keshavjee S: Dynamic changes in
apoptotic and necrotic cell death correlate with severity of
ischemia-reperfusion injury in lung transplantation. Am J Respir
Crit Care Med. 162:1932–1939. 2000. View Article : Google Scholar : PubMed/NCBI
|
7
|
Radons J: The human HSP70 family of
chaperones: Where do we stand? Cell Stress Chaperones. 21:379–404.
2016. View Article : Google Scholar : PubMed/NCBI
|
8
|
van Eden W, van der Zee R and Prakken B:
Heat-shock proteins induce T-cell regulation of chronic
inflammation. Nat Rev Immunol. 5:318–330. 2005. View Article : Google Scholar : PubMed/NCBI
|
9
|
Mayer MP and Bukau B: Hsp70 chaperones:
Cellular functions and molecular mechanism. Cell Mol Life Sci.
62:670–684. 2005. View Article : Google Scholar : PubMed/NCBI
|
10
|
Gao Y, Han C, Huang H, Xin Y, Xu Y, Luo L
and Yin Z: Heat shock protein 70 together with its co-chaperone
CHIP inhibits TNF-alpha induced apoptosis by promoting proteasomal
degradation of apoptosis signal-regulating kinase1. Apoptosis.
15:822–833. 2010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Liu S, Xu J, Fang C, Shi C, Zhang X, Yu B
and Yin Y: Over-expression of heat shock protein 70 protects mice
against lung ischemia/reperfusion injury through SIRT1/AMPK/eNOS
pathway. Am J Transl Res. 8:4394–4404. 2016.PubMed/NCBI
|
12
|
Paul S and Mahanta S: Association of
heat-shock proteins in various neurodegenerative disorders: Is it a
master key to open the therapeutic door? Mol Cell Biochem.
386:45–61. 2014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Yamashima T: Hsp70.1 and related lysosomal
factors for necrotic neuronal death. J Neurochem. 120:477–494.
2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Hiratsuka M, Mora BN, Yano M, Mohanakumar
T and Patterson GA: Gene transfer of heat shock protein 70 protects
lung grafts from ischemia-reperfusion injury. Ann Thorac Surg.
67:1421–1427. 1999. View Article : Google Scholar : PubMed/NCBI
|
15
|
Li J, Zhang Y, Li C, Xie J, Liu Y, Zhu W,
Zhang X, Jiang S, Liu L and Ding Z: HSPA12B attenuates cardiac
dysfunction and remodelling after myocardial infarction through an
eNOS-dependent mechanism. Cardiovasc Res. 99:674–684. 2013.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Chi W, Meng F, Li Y, Wang Q, Wang G, Han
S, Wang P and Li J: Downregulation of miRNA-134 protects neural
cells against ischemic injury in N2A cells and mouse brain with
ischemic stroke by targeting HSPA12B. Neuroscience. 277:111–122.
2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Jayanthi S, Deng X, Bordelon M, McCoy MT
and Cadet JL: Methamphetamine causes differential regulation of
pro-death and anti-death Bcl-2 genes in the mouse neocortex. FASEB
J. 15:1745–1752. 2001. View Article : Google Scholar : PubMed/NCBI
|
18
|
Nuñez G, Benedict MA, Hu Y and Inohara N:
Caspases: The proteases of the apoptotic pathway. Oncogene.
17:3237–3245. 1998. View Article : Google Scholar : PubMed/NCBI
|
19
|
Wu H, Che X, Zheng Q, Wu A, Pan K, Shao A,
Wu Q, Zhang J and Hong Y: Caspases: A molecular switch node in the
crosstalk between autophagy and apoptosis. Int J Biol Sci.
10:1072–1083. 2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Qi Z, Qi S, Gui L, Shen L and Feng Z:
Daphnetin protects oxidative stress-induced neuronal apoptosis via
regulation of MAPK signaling and HSP70 expression. Oncol Lett.
12:1959–1964. 2016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Zhang L, Ding W, Sun H, Zhou Q, Huang J,
Li X, Xie Y and Chen J: Salidroside protects PC12 cells from
MPP+-induced apoptosis via activation of the PI3K/Akt
pathway. Food Chem Toxicol. 50:2591–2597. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Shoji T, Yoshida S, Mitsunari M, Miyake N,
Tsukihara S, Iwabe T, Harada T and Terakawa N: Involvement of p38
MAP kinase in lipopolysaccharide-induced production of pro- and
anti-inflammatory cytokines and prostaglandin E(2) in human
choriodecidua. J Reprod Immunol. 75:82–90. 2007. View Article : Google Scholar : PubMed/NCBI
|
23
|
López-Neblina F and Toledo-Pereyra LH:
Phosphoregulation of signal transduction pathways in ischemia and
reperfusion. J Surg Res. 134:292–299. 2006. View Article : Google Scholar : PubMed/NCBI
|
24
|
Kamiya T, Kwon AH, Kanemaki T, Matsui Y,
Uetsuji S, Okumura T and Kamiyama Y: A simplified model of hypoxic
injury in primary cultured rat hepatocytes. In Vitro Cell Dev Biol
Anim. 34:131–137. 1998. View Article : Google Scholar : PubMed/NCBI
|
25
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Ng CS, Wan S, Arifi AA and Yim AP:
Inflammatory response to pulmonary ischemia-reperfusion injury.
Surg Today. 36:205–214. 2006. View Article : Google Scholar : PubMed/NCBI
|
27
|
Ng CS, Wan S and Yim AP: Pulmonary
ischaemia-reperfusion injury: Role of apoptosis. Eur Respir J.
25:356–363. 2005. View Article : Google Scholar : PubMed/NCBI
|
28
|
Antoniou KM, Pataka A, Bouros D and
Siafakas NM: Pathogenetic pathways and novel pharmacotherapeutic
targets in idiopathic pulmonary fibrosis. Pulm Pharmacol Ther.
20:453–461. 2007. View Article : Google Scholar : PubMed/NCBI
|
29
|
Giffard RG and Yenari MA: Many mechanisms
for hsp70 protection from cerebral ischemia. J Neurosurg
Anesthesiol. 16:53–61. 2004. View Article : Google Scholar : PubMed/NCBI
|
30
|
Kato K, Yamanaka K, Hasegawa A and Okada
S: Dimethylarsinic acid exposure causes accumulation of Hsp72 in
cell nuclei and suppresses apoptosis in human alveolar cultured
(L-132) cells. Biol Pharm Bull. 22:1185–1188. 1999. View Article : Google Scholar : PubMed/NCBI
|
31
|
Wang H, Dong Y and Cai Y: Alanyl-glutamine
prophylactically protects against lipopolysaccharide-induced acute
lung injury by enhancing the expression of HSP70. Mol Med Rep.
16:2807–2813. 2017. View Article : Google Scholar : PubMed/NCBI
|
32
|
Higashi T, Takechi H, Uemura Y, Kikuchi H
and Nagata K: Differential induction of mRNA species encoding
several classes of stress proteins following focal cerebral
ischemia in rats. Brain Res. 650:239–248. 1994. View Article : Google Scholar : PubMed/NCBI
|
33
|
Zhang H, Okamoto M, Panzhinskiy E, Zawada
WM and Das M: PKCδ/midkine pathway drives hypoxia-induced
proliferation and differentiation of human lung epithelial cells.
Am J Physiol Cell Physiol. 306:C648–C658. 2014. View Article : Google Scholar : PubMed/NCBI
|
34
|
Hu Z, Huang J, Li Q, Yang J, Zhong L and
Zeng Q: Effect of hypoxia on infiltration and migration of lung
cancer cells and expression of MMP-2 and TIMP-2. Zhongguo Fei Ai Za
Zhi. 8:270–273. 2005.(In Chinese). PubMed/NCBI
|
35
|
Pietenpol JA and Stewart ZA: Cell cycle
checkpoint signaling: Cell cycle arrest versus apoptosis.
Toxicology 181–182. 475–481. 2002. View Article : Google Scholar
|
36
|
Tanoue T and Nishida E: Molecular
recognitions in the MAP kinase cascades. Cell Signal. 15:455–462.
2003. View Article : Google Scholar : PubMed/NCBI
|
37
|
Johnson GL and Lapadat R:
Mitogen-activated protein kinase pathways mediated by ERK, JNK, and
p38 protein kinases. Science. 298:1911–1912. 2002. View Article : Google Scholar : PubMed/NCBI
|
38
|
Chao X, Zao J, Xiao-Yi G, Li-Jun M and Tao
S: Blocking of PI3K/AKT induces apoptosis by its effect on NF-κB
activity in gastric carcinoma cell line SGC7901. Biomed
Pharmacother. 64:600–604. 2010. View Article : Google Scholar : PubMed/NCBI
|
39
|
Plotkin LI and Bellido T:
Bisphosphonate-induced, hemichannel-mediated, anti-apoptosis
through the Src/ERK pathway: A gap junction-independent action of
connexin43. Cell Commun Adhes. 8:377–382. 2001. View Article : Google Scholar : PubMed/NCBI
|
40
|
Bezler M, Hengstler JG and Ullrich A:
Inhibition of doxorubicin-induced HER3-PI3K-AKT signalling enhances
apoptosis of ovarian cancer cells. Mol Oncol. 6:516–529. 2012.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Qi Z, Qi S, Gui L, Shen L and Feng Z:
Daphnetin protects oxidative stress-induced neuronal apoptosis via
regulation of MAPK signaling and HSP70 expression. Oncol Lett.
12:1959–1964. 2016. View Article : Google Scholar : PubMed/NCBI
|
42
|
Ji K, Xue L, Cheng J and Bai Y:
Preconditioning of H2S inhalation protects against cerebral
ischemia/reperfusion injury by induction of HSP70 through
PI3K/Akt/Nrf2 pathway. Brain Res Bull. 121:68–74. 2016. View Article : Google Scholar : PubMed/NCBI
|
43
|
Oraldi M, Saracino S, Maggiora M,
Chiaravalloti A, Buemi C, Martinasso G, Paiuzzi E, Thompson D,
Vasiliou V and Canuto RA: Importance of inverse correlation between
ALDH3A1 and PPARγ in tumor cells and tissue regeneration. Chem Biol
Interact. 191:171–176. 2011. View Article : Google Scholar : PubMed/NCBI
|