1
|
Hjalt TA and Semina EV: Current molecular
understanding of Axenfeld-Rieger syndrome. Expert Rev Mol Med.
7:1–17. 2005. View Article : Google Scholar : PubMed/NCBI
|
2
|
Millá E, Mañé B, Duch S, Hernan I, Borràs
E, Planas E, Dias Mde S, Carballo M and Gamundi MJ; Spanish
Multicenter Glaucoma Group-Estudio Multicéntrico Español de
Investigación Genética del Glaucoma, EMEIGG, : Survey of familial
glaucoma shows a high incidence of cytochrome P450, family 1,
subfamily B, polypeptide 1 (CYP1B1) mutations in non-consanguineous
congenital forms in a Spanish population. Mol Vis. 19:1707–1722.
2013.PubMed/NCBI
|
3
|
Espinoza HM, Cox CJ, Semina EV and Amendt
BA: Amolecular basis for differential developmental anomalies in
Axenfeld-Rieger syndrome. Hum Mol Genet. 11:743–753. 2002.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Reis LM, Tyler RC, Volkmann Kloss BA,
Schilter KF, Levin AV, Lowry RB, Zwijnenburg PJ, Stroh E, Broeckel
U, Murray JC and Semina EV: PITX2 and FOXC1 spectrum of mutations
in ocular syndromes. Eur J Hum Genet. 20:1224–1233. 2012.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Challa P: Glaucoma genetics. Int
Ophthalmol Clin. 48:73–94. 2008. View Article : Google Scholar : PubMed/NCBI
|
6
|
Gage PJ and Camper SA: Pituitary homeobox
2, a novel member of the bicoid-related family of homeobox genes,
is a potential regulator of anterior structure formation. Hum Mol
Genet. 6:457–464. 1997. View Article : Google Scholar : PubMed/NCBI
|
7
|
Tümer Z and Bach-Holm D: Axenfeld-Rieger
syndrome and spectrum of PITX2 and FOXC1 mutations. Eur J Hum
Genet. 17:1527–1539. 2009. View Article : Google Scholar : PubMed/NCBI
|
8
|
Cox MP, Peterson DA and Biggs PJ:
SolexaQA: At-a-glance quality assessment of Illumina
second-generation sequencing date. BMC Bioinformatics. 11:4852010.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Li H and Durbin R: Fast and accurate short
read alignment with Burrows-Wheeler transform. Bioinformatics.
25:1754–1760. 2009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Wang K, Li M and Hakonarson H: ANNOVAR:
Functional annotation of genetic variants from high-throughput
sequencing data. Nucleic Acids Res. 38:e1642010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Seifi M and Walter MA: Axenfeld-Rieger
syndrome. Clin Genet. 93:1123–1130. 2018. View Article : Google Scholar : PubMed/NCBI
|
12
|
Micheal S, Siddiqui SN, Zafar SN,
Venselaar H, Qamar R, Khan MI and den Hollander AI: Whole exome
sequencing identifies a heterozygous missense variant in the PRDM5
gene in a family with Axenfeld-Rieger syndrome. Neurogenetics.
17:17–23. 2016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Riise R, D'haene B, De Baere E, Grønskov K
and Brøndum-Nielsen K: Rieger syndrome is not associated with PAX6
deletion: A correction to Acta. Ophthalmol Scand 2001:79: 201–203.
Acta Ophthalmol. 87:9232009. View Article : Google Scholar : PubMed/NCBI
|
14
|
Kim GN, Ki CS, Seo SW, Yoo JM, Han YS,
Chung IY, Park JM and Kim SJ: A novel forkhead box C1 gene mutation
in a Korean family with Axenfeld-Rieger syndrome. Mol Vis.
19:935–943. 2013.PubMed/NCBI
|
15
|
Kawase C, Kawase K, Taniguchi T, Sugiyama
K, Yamamoto T, Kitazawa Y, Alward KL, Stone EM, Nishimura DY and
Sheffield VC: Screening for mutations of Axenfeld-Rieger syndrome
caused by FOXC1 gene in Japanese patients. J Glaucoma. 10:477–482.
2001. View Article : Google Scholar : PubMed/NCBI
|
16
|
Saleem RA, Banerjee-Basu S, Berry FB,
Baxevanis AD and Walter MA: Structural and functional analyses of
disease-causing missense mutations in the forkhead domain of FOXC1.
Hum Mol Genet. 12:2993–3005. 2003. View Article : Google Scholar : PubMed/NCBI
|
17
|
Suzuki T, Takahashi K, Kuwahara S, Wada Y,
Abe T and Tamai M: A novel (Pro79Thr) mutation in the FKHL7 gene in
a Japanese family with Axenfeld-Rieger syndrome. Am J Ophthalmol.
132:572–575. 2001. View Article : Google Scholar : PubMed/NCBI
|
18
|
Strungaru MH, Dinu I and Walter MA:
Genotype-phenotype correlations in Axenfeld-Rieger malformation and
glaucoma patients with FOXC1 and PITX2 mutations. Invest Ophthalmol
Vis Sci. 48:228–237. 2007. View Article : Google Scholar : PubMed/NCBI
|
19
|
Seifi M, Footz T, Taylor SA and Walter MA:
Comparison of bioinformatics prediction, molecular modeling, and
functional analyses of FOXC1 mutations in patients with
Axenfeld-Rieger syndrome. Hum Mutat. 38:169–179. 2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Honkanen RA, Nishimura DY, Swiderski RE,
Bennett SR, Hong S, Kwon YH, Stone EM, Sheffield VC and Alward WL:
A family with Axenfeld-Rieger syndrome and peters anomaly caused by
a point mutation (Phe112Ser) in the FOXC1 gene. Am J Ophthalmol.
135:368–75. 2003. View Article : Google Scholar : PubMed/NCBI
|
21
|
Berry FB, Lines MA, Oas JM, Footz T,
Underhill DA, Gage PJ and Walter MA: Functional interactions
between FOXC1 and PITX2 underlie the sensitivity to FOXC1 gene dose
in Axenfeld-Rieger syndrome and anterior segment dysgenesis. Hum
Mol Genet. 15:905–919. 2006. View Article : Google Scholar : PubMed/NCBI
|
22
|
Seifi M, Footz T, Taylor SA, Elhady GM,
Abdalla EM and Walter MA: Novel PITX2 gene mutations in patients
with Axenfeld-Rieger syndrome. Acta Ophthalmol. 94:e571–e579. 2016.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Berry FB, Mirzayans F and Walter MA:
Regulation of FOXC1 stability and transcriptional activity by an
epidermal growth factor-activated mitogen-activated protein kinase
signaling cascade. J Biol Chem. 281:10098–10104. 2006. View Article : Google Scholar : PubMed/NCBI
|
24
|
Schachtschabel DO, Binninger EA and Rohen
JW: In vitro cultures of trabecular meshwork cells of the human eye
as a model system for the study of cellular aging. Arch Gerontol
Geriatr. 9:251–262. 1989. View Article : Google Scholar : PubMed/NCBI
|
25
|
Mandal AK and Pehere N: Early-onset
glaucoma in Axenfeld-Rieger anomaly: Long-term surgical results and
visual outcome. Eye (Lond). 30:936–942. 2016. View Article : Google Scholar : PubMed/NCBI
|