1
|
Petersen MC and Shulman GI: Mechanisms of
insulin action and insulin resistance. Physiol Rev. 98:2133–2223.
2018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Samuel VT, Petersen KF and Shulman GI:
Lipid-induced insulin resistance: Unravelling the mechanism.
Lancet. 375:2267–2277. 2010. View Article : Google Scholar : PubMed/NCBI
|
3
|
Virtue S and Vidal-Puig A: Adipose tissue
expandability, lipotoxicity and the metabolic syndrome-an
allostatic perspective. Biochim Biophys Acta. 1801:338–349. 2010.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Scherer PE: Adipose tissue: From lipid
storage compartment to endocrine organ. Diabetes. 55:1537–1545.
2006. View Article : Google Scholar : PubMed/NCBI
|
5
|
Vatier C, Vantyghem M-C, Storey C, Jéru I,
Christin-Maitre S, Fève B, Lascols O, Beltrand J, Carel JC,
Vigouroux C and Bismuth E: Monogenic forms of lipodystrophic
syndromes: Diagnosis, detection, and practical management
considerations from clinical cases. Curr Med Res Opin. 35:543–552.
2019. View Article : Google Scholar : PubMed/NCBI
|
6
|
Ghaben AL and Scherer PE: Adipogenesis and
metabolic health. Nat Rev Mol Cell Biol. 20:242–258. 2019.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Nawrocki AR and Scherer PE: Keynote
review: The adipocyte as a drug discovery target. Drug Discov
Today. 10:1219–1230. 2005. View Article : Google Scholar : PubMed/NCBI
|
8
|
Rosen ED and MacDougald OA: Adipocyte
differentiation from the inside out. Nat Rev Mol Cell Biol.
7:885–896. 2006. View
Article : Google Scholar : PubMed/NCBI
|
9
|
Rosen ED, Sarraf P, Troy AE, Bradwin G,
Moore K, Milstone DS, Spiegelman BM and Mortensen RM: PPAR gamma is
required for the differentiation of adipose tissue in vivo and in
vitro. Mol Cell. 4:611–617. 1999. View Article : Google Scholar : PubMed/NCBI
|
10
|
Rosen ED, Walkey CJ, Puigserver P and
Spiegelman BM: Transcriptional regulation of adipogenesis. Genes
Dev. 14:1293–1307. 2000.PubMed/NCBI
|
11
|
Xavier MN, Winter MG, Spees AM, den
Hartigh AB, Nguyen K, Roux CM, Silva TM, Atluri VL, Kerrinnes T,
Keestra AM, et al: PPAR gamma-mediated increase in glucose
availability sustains chronic brucella abortus infection in
alternatively activated macrophages. Cell Host Microbe. 14:159–170.
2013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Cristancho AG and Lazar MA: Forming
functional fat: A growing understanding of adipocyte
differentiation. Nat Rev Mol Cell Biol. 12:722–734. 2011.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Saltiel AR and Kahn CR: Insulin signalling
and the regulation of glucose and lipid metabolism. Nature.
414:799–806. 2001. View
Article : Google Scholar : PubMed/NCBI
|
14
|
Peng XD, Xu PZ, Chen ML, Hahn-Windgassen
A, Skeen J, Jacobs J, Sundararajan D, Chen WS, Crawford SE, Coleman
KG and Hay N: Dwarfism, impaired skin development, skeletal muscle
atrophy, delayed bone development, and impeded adipogenesis in mice
lacking Akt1 and Akt2. Genes Dev. 17:1352–1365. 2003. View Article : Google Scholar : PubMed/NCBI
|
15
|
Rochford JJ: Mouse models of lipodystrophy
and their significance in understanding fat regulation. Curr Top
Dev Biol. 109:53–96. 2014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Sun NN, Wu TY and Chau CF: Natural dietary
and herbal products in anti-obesity treatment. Molecules.
21:13512016. View Article : Google Scholar
|
17
|
Wang S, Chen Q and He L: Development and
validation of a gas chromatography-mass spectrometry method for the
determination of isoimperatorin in rat plasma and tissue:
Application to the pharmacokinetic and tissue distribution study. J
Chromatogr B Analyt Technol Biomed Life Sci. 852:473–478. 2007.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Shi X, Liu M, Zhang M, Zhang K, Liu S,
Qiao S, Shi R, Jiang X and Wang Q: Identification of in vitro and
in vivo metabolites of isoimperatorin using liquid
chromatography/mass spectrometry. Food Chem. 141:357–365. 2013.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Wijerathne CUB, Seo CS, Song JW, Park HS,
Moon OS, Won YS, Kwon HJ and Son HY: Isoimperatorin attenuates
airway inflammation and mucus hypersecretion in an
ovalbumin-induced murine model of asthma. Int Immunopharmacol.
49:67–76. 2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Hwang YH, Yang HJ and Ma JY: Simultaneous
determination of three furanocoumarins by UPLC/MS/MS: Application
to pharmacokinetic study of Angelica dahurica radix after
oral administration to normal and experimental Colitis-induced
rats. Molecules. 22:E4162017. View Article : Google Scholar : PubMed/NCBI
|
21
|
Yang HB, Gao HR, Ren YJ, Fang FX, Tian HT,
Gao ZJ, Song W, Huang SM and Zhao AF: Effects of isoimperatorin on
proliferation and apoptosis of human gastric carcinoma cells. Oncol
Lett. 15:7993–7998. 2018.PubMed/NCBI
|
22
|
Pokharel YR, Han EH, Kim JY, Oh SJ, Kim
SK, Woo ER, Jeong HG and Kang KW: Potent protective effect of
isoimperatorin against aflatoxin B1-inducible cytotoxicity in H4IIE
cells: Bifunctional effects on glutathione S-transferase and CYP1A.
Carcinogenesis. 27:2483–2490. 2006. View Article : Google Scholar : PubMed/NCBI
|
23
|
Wang LY, Cheng KC, Li Y, Niu CS, Cheng JT
and Niu HS: The dietary furocoumarin imperatorin increases plasma
GLP-1 levels in type 1-like diabetic rats. Nutrients. 9:E11922017.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Tang QQ and Lane MD: Adipogenesis: From
stem cell to adipocyte. Annu Rev Biochem. 81:715–736. 2012.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Zhang JW, Tang QQ, Vinson C and Lane MD:
Dominant-negative C/EBP disrupts mitotic clonal expansion and
differentiation of 3T3-L1 preadipocytes. Proc Natl Acad Sci USA.
101:43–47. 2004. View Article : Google Scholar : PubMed/NCBI
|
27
|
Park M, Choi YA, Lee HG, Kim KI, Lim JS,
Lee MS, Oh KS and Yang Y: Dephosphorylation of
CCAAT/enhancer-binding protein beta by protein phosphatase 2A
containing B56 delta is required at the early time of adipogenesis.
Biochim Biophys Acta. 1841:1608–1618. 2014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Cao H, Zhang S, Shan S, Sun C, Li Y, Wang
H, Yu S, Liu Y, Guo F, Zhai Q, et al: Ligand-dependent corepressor
(LCoR) represses the transcription factor C/EBP during early
adipocyte differentiation. J Biol Chem. 292:18973–18987. 2017.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Tang QQ and Lane MD: Activation and
centromeric localization of CCAAT/enhancer-binding proteins during
the mitotic clonal expansion of adipocyte differentiation. Genes
Dev. 13:2231–2241. 1999. View Article : Google Scholar : PubMed/NCBI
|
30
|
Morrison RF and Farmer SR: Role of
PPARgamma in regulating a cascade expression of cyclin-dependent
kinase inhibitors, p18(INK4c) and p21(Waf1/Cip1), during
adipogenesis. J Biol Chem. 274:17088–17097. 1999. View Article : Google Scholar : PubMed/NCBI
|
31
|
Weisiger RA: Cytosolic fatty acid binding
proteins catalyze two distinct steps in intracellular transport of
their ligands. Mol Cell Biochem. 239:35–43. 2002. View Article : Google Scholar : PubMed/NCBI
|
32
|
Rosen ED, Hsu CH, Wang X, Sakai S, Freeman
MW, Gonzalez FJ and Spiegelman B: C/EBPalpha induces adipogenesis
through PPARgamma: A unified pathway. Genes Dev. 16:22–26. 2002.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Gonzalez FJ: Getting fat: Two new players
in molecular adipogenesis. Cell Metab. 1:85–86. 2005. View Article : Google Scholar : PubMed/NCBI
|
34
|
Mota de Sá P, Richard AJ, Hang H and
Stephens JM: Transcriptional regulation of adipogenesis. Compr
Physiol. 7:635–674. 2017. View Article : Google Scholar : PubMed/NCBI
|
35
|
Wang Y, Viscarra J, Kim SJ and Sul HS:
Transcriptional regulation of hepatic lipogenesis. Nat Rev Mol Cell
Biol. 16:678–689. 2015. View
Article : Google Scholar : PubMed/NCBI
|
36
|
Moseti D, Regassa A and Kim WK: Molecular
regulation of adipogenesis and potential anti-adipogenic bioactive
molecules. Int J Mol Sci. 17:E1242016. View Article : Google Scholar : PubMed/NCBI
|
37
|
Fan H, Dong W, Li Q, Zou X, Zhang Y, Wang
J, Li S, Liu W, Dong Y, Sun H and Hou Z: Ajuba preferentially binds
LXR alpha/RXR gamma heterodimer to enhance LXR target gene
expression in liver cells. Mol Endocrinol. 29:1608–1618. 2015.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Chen J, Zhou X, Wu W, Wang X and Wang Y:
FTO-dependent function of N6-methyladenosine is involved in the
hepatoprotective effects of betaine on adolescent mice. J Physiol
Biochem. 71:405–413. 2015. View Article : Google Scholar : PubMed/NCBI
|
39
|
Cases S, Smith SJ, Zheng YW, Myers HM,
Lear SR, Sande E, Novak S, Collins C, Welch CB, Lusis AJ, et al:
Identification of a gene encoding an acyl CoA: Diacylglycerol
acyltransferase, a key enzyme in triacylglycerol synthesis. Proc
Natl Acad Sci USA. 95:13018–13023. 1998. View Article : Google Scholar : PubMed/NCBI
|
40
|
Watt MJ and Steinberg GR: Regulation and
function of triacylglycerol lipases in cellular metabolism. Biochem
J. 414:313–325. 2008. View Article : Google Scholar : PubMed/NCBI
|
41
|
Xu J and Liao K: Protein kinase B/AKT 1
plays a pivotal role in insulin-like growth factor-1 receptor
signaling induced 3T3-L1 adipocyte differentiation. J Biol Chem.
279:35914–35922. 2004. View Article : Google Scholar : PubMed/NCBI
|
42
|
Green CJ, Göransson O, Kular GS, Leslie
NR, Gray A, Alessi DR, Sakamoto K and Hundal H: Use of Akt
inhibitor and a drug-resistant mutant validates a critical role for
protein kinase B/Akt in the insulin-dependent regulation of glucose
and system A amino acid uptake. J Biol Chem. 283:27653–27667. 2008.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Balakrishnan BB, Krishnasamy K and Choi
KC: Moringa concanensis Nimmo ameliorates hyperglycemia in
3T3-L1 adipocytes by upregulating PPAR-gamma, C/EBP-alpha via Akt
signaling pathway and STZ-induced diabetic rats. Biomed
Pharmacother. 103:719–728. 2018. View Article : Google Scholar : PubMed/NCBI
|
44
|
Choe WK, Kang BT and Kim SO:
Water-extracted plum (Prunus salicina L. cv. Soldam)
attenuates adipogenesis in murine 3T3-L1 adipocyte cells through
the PI3K/Akt signaling pathway. Exp Ther Med. 15:1608–1615.
2018.PubMed/NCBI
|