Open Access

Annexin A2 upregulation protects human retinal endothelial cells from oxygen‑glucose deprivation injury by activating autophagy

  • Authors:
    • Shule Jiang
    • Yile Xu
  • View Affiliations

  • Published online on: August 16, 2019     https://doi.org/10.3892/etm.2019.7909
  • Pages: 2901-2908
  • Copyright: © Jiang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Retinal neovascularization is a common pathological change in multiple diseases of the eyes and the upregulation of annexin A2 (A2) under a hypoxic and ischemic microenvironment has been demonstrated to be a key factor in the pathological process. However, the underlying mechanism by which A2 regulates retinal neovascularization remains unclear. In the present study, oxygen‑glucose deprivation (OGD) was used to mimic the hypoxic and ischemic microenvironment, to observe the role of A2 in retinal neovascularization regulation by focusing on autophagy. The results showed that OGD treatment significantly increased the mRNA and protein levels of A2 in human retinal endothelial cells (HRECs), which was dependent on activation of hypoxia inducible factor (HIF)‑1α signaling. The OGD‑induced activation of autophagy was attenuated when A2 was silenced, but increased when A2 was overexpressed, suggesting that A2 upregulation contributed to OGD‑induced cell autophagy activation. Furthermore, knockdown of A2 decreased cell viability and promoted cell apoptosis under OGD conditions. Overexpression of A2 increased cell viability and reduced cell apoptosis under OGD conditions, and inhibiting autophagy using an inhibitor, reversed these changes, suggesting that upregulation of A2 by OGD serves a cytoprotective role by inducing cell autophagy in HRECs. Taken together, the results of the present study suggested that promoting retinal endothelial cell survival by autophagy activation via the HIF‑1α signaling pathway in a hypoxic and ischemic microenvironment may underlie the mechanism by which A2 regulates retinal neovascularization. The present study is the first study to demonstrate the novel role of A2 during retinal neovascularization under pathological conditions, to the best of our knowledge. Therefore, A2 may serve as a potential therapeutic target for treating neovascularization‑associated conditions of the eye.
View Figures
View References

Related Articles

Journal Cover

October-2019
Volume 18 Issue 4

Print ISSN: 1792-0981
Online ISSN:1792-1015

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Jiang S and Xu Y: Annexin A2 upregulation protects human retinal endothelial cells from oxygen‑glucose deprivation injury by activating autophagy. Exp Ther Med 18: 2901-2908, 2019.
APA
Jiang, S., & Xu, Y. (2019). Annexin A2 upregulation protects human retinal endothelial cells from oxygen‑glucose deprivation injury by activating autophagy. Experimental and Therapeutic Medicine, 18, 2901-2908. https://doi.org/10.3892/etm.2019.7909
MLA
Jiang, S., Xu, Y."Annexin A2 upregulation protects human retinal endothelial cells from oxygen‑glucose deprivation injury by activating autophagy". Experimental and Therapeutic Medicine 18.4 (2019): 2901-2908.
Chicago
Jiang, S., Xu, Y."Annexin A2 upregulation protects human retinal endothelial cells from oxygen‑glucose deprivation injury by activating autophagy". Experimental and Therapeutic Medicine 18, no. 4 (2019): 2901-2908. https://doi.org/10.3892/etm.2019.7909