1
|
Zhao K, Li H, Li S and Yang G: Regulation
of cystathionine gamma-lyase/H2S system and its
pathological implication. Front Biosci (Landmark Ed). 19:1355–1369.
2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Chang L, Geng B, Yu F, Zhao J, Jiang H, Du
J and Tang C: Hydrogen sulfide inhibits myocardial injury induced
by homocysteine in rats. Amino Acids. 34:573–585. 2008. View Article : Google Scholar : PubMed/NCBI
|
3
|
Sivarajah A, Collino M, Yasin M, Benetti
E, Gallicchio M, Mazzon E, Cuzzocrea S, Fantozzi R and Thiemermann
C: Anti-apoptotic and anti-inflammatory effects of hydrogen sulfide
in a mice model of regional myocardial I/R. Shock. 31:267–274.
2009. View Article : Google Scholar : PubMed/NCBI
|
4
|
Yang G, Li H, Tang G, Wu L, Zhao K, Cao Q,
Xu C and Wang R: Increased neointimal formation in cystathionine
gamma-lyase deficient mice: Role of hydrogen sulfide in
α5β1-integrin and matrix metalloproteinase-2 expression in smooth
muscle cells. J Mol Cell Cardiol. 52:677–688. 2012. View Article : Google Scholar : PubMed/NCBI
|
5
|
Mani S, Li H, Untereiner A, Wu L, Yang G,
Austin RC, Dickhout JG, Lhoták Š, Meng QH and Wang R: Decreased
endogenous production of hydrogen sulfide accelerates
atherosclerosis. Circulation. 127:2523–2534. 2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Wang R: Two's company, three's a crowd:
can H2S be the third endogenous gaseous transmitter? FASEB J.
16:1792–1798. 2002. View Article : Google Scholar : PubMed/NCBI
|
7
|
Wang R: The gasotransmitter role of
hydrogen sulfide. Antioxid Redox Signal. 5:493–501. 2003.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Yang G, Wu L, Jiang B, Yang W, Qi J, Cao
K, Meng Q, Mustafa AK, Mu W, Zhang S, et al: H2S as a physiologic
vasorelaxant: hypertension in mice with deletion of cystathionine
gamma-lyase. Science. 322:587–590. 2008. View Article : Google Scholar : PubMed/NCBI
|
9
|
Li H, Mani S, Cao W, Yang G, Lai C, Wu L
and Wang R: Interaction of hydrogen sulfide and estrogen on the
proliferation of vascular smooth muscle cells. PLoS One.
7:e416142012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Loirand G, Guérin P and Pacaud P: Rho
kinases in cardiovascular physiology and pathophysiology. Circ Res.
98:322–334. 2006. View Article : Google Scholar : PubMed/NCBI
|
11
|
Dong M, Yan BP, Liao JK, Lam YY, Yip GW
and Yu CM: Rho-kinase inhibition: A novel therapeutic target for
the treatment of cardiovascular diseases. Drug Discov Today.
15:622–629. 2010. View Article : Google Scholar : PubMed/NCBI
|
12
|
Satoh K, Fukumoto Y and Shimokawa H:
Rho-kinase: Important new therapeutic target in cardiovascular
diseases. Am J Physiol Heart Circ Physiol. 301:H287–H296. 2011.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Shimokawa H and Satoh K: 2015 ATVB plenary
lecture translational research on rho-kinase in cardiovascular
medicine. Arterioscler Thromb Vasc Boil. 35:1756–1769. 2015.
View Article : Google Scholar
|
14
|
Zhang J, Li XX, Bian HJ, Liu XB, Ji XP and
Zhang Y: Inhibition of the activity of Rho kinase reduces
cardiomyocyte apoptosis in heart ischemia/reperfusion via
suppressing JNK-mediated AIF translocation. Clin Chim Acta.
401:76–80. 2009. View Article : Google Scholar : PubMed/NCBI
|
15
|
Li Y, Zhu W, Tao J, Xin P, Liu M, Li J and
Wei M: Fasudil protects the heart against ischemia-reperfusion
injury by attenuating endoplasmic reticulum stress and modulating
SERCA activity: The differential role for PI3K/Akt and JAK2/STAT3
signaling pathways. PLoS One. 7:e481152012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Dai SJ, Chen RY and Yu DQ: Studies on the
flavonoid compounds of Rhododendron anthopogonoides. Zhongguo Zhong
Yao Za Zhi. 29:44–47. 2004.(In Chinese). PubMed/NCBI
|
17
|
Huang Y, Yin P, Jiang DF, Wang CY, Tan R,
Wan L, Zhang Y and Fan G: Quality standard of rhododendron flos.
World Sci Technol. 16:151–155. 2014.
|
18
|
Yuan LP, Chen ZW, Li F, Dong LY and Chen
FH: Protective effect of total flavones of Rhododendra on ischemic
myocardial injury in rabbits. Am J Chin Med. 34:483–492. 2006.(In
Chinese). View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhang JH, Chen ZW and Wu Z: Late
protective effect of pharmacological preconditioning with total
flavones of Rhododendra against myocardial ischemia-reperfusion
injury. Can J Physiol Pharmacol. 86:131–138. 2008. View Article : Google Scholar : PubMed/NCBI
|
20
|
Jiao Y, Fan YF, Wang YL, Zhang JY, Chen S
and Chen ZW: Protective effect and mechanism of total flavones from
rhododendron simsii Planch flower on cultured Rat cardiomyocytes
with anoxia and reoxygenation. Evid Based Complement Alternat Med.
2015:8635312015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Hausenloy DJ, Tsang A and Yellon DM: The
reperfusion injury salvage kinase pathway: A common target for both
ischemic preconditioning and postconditioning. Trends Cardiovasc
Med. 15:69–75. 2005. View Article : Google Scholar : PubMed/NCBI
|
22
|
Terrell AM, Crisostomo PR, Wairiuko GM,
Wang M, Morrell ED and Meldrum DR: Jak/STAT/SOCS signaling circuits
and associated cytokine-mediated inflammation and hypertrophy in
the heart. Shock. 26:226–234. 2006. View Article : Google Scholar : PubMed/NCBI
|
23
|
Demirynrek S, Kara AF, Celik A, Babül A,
Tarakçioglu M and Demiryürek AT: Effects of fasudil. A Rho-kinase
inhibitor.on myocardial preconditioning in anesthetized mice. Eur J
Pharmacol. 527:129–140. 2005. View Article : Google Scholar : PubMed/NCBI
|
24
|
Janet C, Garber R, Wayne B, Joseph T,
Bielitzki, Leigh AC, John C, Donovan, et al: Guide for the Care and
Use of Laboratory Animals of the National Institutes of HealthNIH
Publication; 85-23. revised. 2011
|
25
|
Rona G, Chappel CI, Balazs T and Gaudry R:
An infarct-like myocardial lesion and other toxic manifestations
produced by isoproterenol in the rat. AMA Arch Pathol. 67:443–455.
1959.PubMed/NCBI
|
26
|
Xu X, Li H, Gong Y, Zheng H and Zhao D:
Hydrogen sulfide ameliorated lipopolysaccharide-induced acute lung
injury by inhibiting autophagy through PI3K/Akt/mTOR pathway in
mice. Biochem Biophys Res Commun. 507:514–518. 2018. View Article : Google Scholar : PubMed/NCBI
|
27
|
Chau VQ, Salloum FN, Hoke NN, Abbate A and
Kukreja RC: Mitigation of the progression of heart failure with
sildenafil involves inhibition of RhoA/Rho-kinase pathway. Am J
Physiol Heart Circ Physiol. 300:H2272–H2279. 2011. View Article : Google Scholar : PubMed/NCBI
|
28
|
Yatani A, Irie K, Otani T, Abdellatif M
and Wei L: RhoA GTPase regulates L-type Ca2+ currents in cardiac
myocytes. Am J Physiol Heart Circ Physiol. 288:H650–H659. 2005.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Shimokawa H, Hiramori K, Iinuma H, Hosoda
S, Kishida H, Osada H, Katagiri T, Yamauchi K, Yui Y, Minamino T,
et al: Anti-anginal effect of fasudil, a Rho-kinase inhibitor, in
patients with stable effort angina: A multicenter study. J
Cardiovasc Pharmacol. 40:751–761. 2002. View Article : Google Scholar : PubMed/NCBI
|
30
|
Saito Y, Kondo H and Hojo Y: Granzyme B as
a novel factor involved in cardiovascular diseases. J Cardiol.
57:141–147. 2011. View Article : Google Scholar : PubMed/NCBI
|
31
|
Hamid SA, Bower HS and Baxter GF: Rho
kinase activation plays a major role as a mediator of irreversible
injury in reperfused myocardium. Am J Physiol Heart Circ Physiol.
292:2598–2606. 2007. View Article : Google Scholar
|
32
|
Hu Y, Chen X, Pan TT, Neo KL, Lee SW, Khin
ES, Moore PK and Bian JS: Cardioprotection induced by hydrogen
sulfide preconditioning involves activation of ERK and PI3K/Akt
pathways. Pflugers Arch. 455:607–616. 2008. View Article : Google Scholar : PubMed/NCBI
|
33
|
Uehata M, Ishizaki T, Satoh H, Ono T,
Kawahara T, Morishita T, Tamakawa H, Yamagami K, Inui J, Maekawa M
and Narumiya S: Calcium sensitization of smooth muscle mediated by
a Rho-associated protein kinase in hypertension. Nature.
389:990–994. 1997. View
Article : Google Scholar : PubMed/NCBI
|
34
|
Abe K, Shimokawa H, Morikawa K, Uwatoku T,
Oi K, Matsumoto Y, Hattori T, Nakashima Y, Kaibuchi K, Sueishi K
and Takeshit A: Long-term treatment with a Rho-kinase inhibitor
improves monocrotaline-induced fatal pulmonary hypertension in
rats. Circ Res. 94:385–393. 2004. View Article : Google Scholar : PubMed/NCBI
|
35
|
Chen ZW, Ma CG, Fang M and Xu SY: The
blocking effect of hyperin on the inward flow of calcium ion. Yao
Xue Xue Bao. 29:15–19. 1994.(In Chinese). PubMed/NCBI
|
36
|
Kimura H: Hydrogen sulfide as a
neuromodulator. Mol Neurobiol. 26:13–19. 2002. View Article : Google Scholar : PubMed/NCBI
|
37
|
Geng B, Yang J, Qi Y, Zhao J, Pang Y, Du J
and Tang C: H2S generated by heart in rat and its effects on
cardiac function. Biochem Biophys Res Commun. 313:362–368. 2004.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Zhu YZ, Wang ZJ, Ho P, Loke YY, Zhu YC,
Huang SH, Tan CS, Whiteman M, Lu J and Moore PK: Hydrogen sulfide
and its possible roles in myocardial ischemia in experimental rats.
J Appl Physiol (1985). 102:261–268. 2007. View Article : Google Scholar : PubMed/NCBI
|
39
|
Jin HF, Wang Y, Wang XB, Sun Y, Tang CS
and Du JB: Sulfur dioxide preconditioning increases antioxidative
capacity in rat with myocardial ischemia reperfusion (I/R) injury.
Nitric Oxide. 32:56–61. 2013. View Article : Google Scholar : PubMed/NCBI
|
40
|
Tsai CY, Wang CC, Lai TY, Tsu HN, Wang CH,
Liang HY and Kuo WW: Antioxidant effects of diallyl trisulfide on
high glucose-induced apoptosis are mediated by the
PI3K/Akt-dependent activation of Nrf2 in cardiomyocytes. Int J
Cardiol. 168:1286–1297. 2013. View Article : Google Scholar : PubMed/NCBI
|