1
|
Mäkimattila S, Virkamäki A, Groop PH,
Cockcroft J, Utriainen T, Fagerudd J and Yki-Järvinen H: Chronic
hyperglycemia impairs endothelial function and insulin sensitivity
via different mechanisms in insulin-dependent diabetes mellitus.
Circulation. 94:1276–1282. 1996. View Article : Google Scholar : PubMed/NCBI
|
2
|
Guariguata L, Whiting DR, Hambleton I,
Beagley J, Linnenkamp U and Shaw JE: Global estimates of diabetes
prevalence for 2013 and projections for 2035. Diabetes Res Clin
Pract. 103:137–149. 2014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Brownlee M: The pathobiology of diabetic
complications: A unifying mechanism. Diabetes. 54:1615–1625. 2005.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Giacco F and Brownlee M: Oxidative stress
and diabetic complications. Circ Res. 107:1058–1070. 2010.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Adeyemi DO, Ukwenya VO, Obuotor EM and
Adewole SO: Anti-hepatotoxic activities of Hibiscus sabdariffa L.
in animal model of streptozotocin diabetes-induced liver damage.
BMC Complement Altern Med. 14:2772014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Dias AS, Porawski M, Alonso M, Marroni N,
Collado PS and González-Gallego J: Quercetin decreases oxidative
stress, NF-kappaB activation, and iNOS overexpression in liver of
streptozotocin-induced diabetic rats. J Nutr. 135:2299–2304. 2005.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Matafome P, Nunes E, Louro T, Amaral C,
Crisóstomo J, Rodrigues L, Moedas AR, Monteiro P, Cipriano A and
Seiça R: A role for atorvastatin and insulin combination in
protecting from liver injury in a model of type 2 diabetes with
hyperlipidemia. Naunyn Schmiedebergs Arch Pharmacol. 379:241–251.
2009. View Article : Google Scholar : PubMed/NCBI
|
8
|
Wellen KE and Hotamisligil GS:
Inflammation, stress, and diabetes. J Clin Invest. 115:1111–1119.
2005. View
Article : Google Scholar : PubMed/NCBI
|
9
|
Finkel T, Deng CX and Mostoslavsky R:
Recent progress in the biology and physiology of sirtuins. Nature.
460:587–591. 2009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Lai T, Wen X, Wu D, Su G, Gao Y, Chen C,
Wu W, Lv Y, Chen Z, Lv Q, et al: SIRT1 protects against urban
particulate matter-induced airway inflammation. Int J Chron
Obstruct Pulmon Dis. 14:17412019. View Article : Google Scholar : PubMed/NCBI
|
11
|
Lee JH, Moon JH, Lee YJ and Park SY:
SIRT1, a Class III histone deacetylase, regulates LPS-induced
inflammation in human keratinocytes and mediates the
anti-inflammatory effects of hinokitiol. J Invest Dermatol.
137:1257–1266. 2017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Harris HE, Andersson U and Pisetsky DS:
HMGB1: A multifunctional alarmin driving autoimmune and
inflammatory disease. Nat Rev Rheumatol. 8:195–202. 2012.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Yang H, Wang H, Chavan SS and Andersson U:
High mobility group box protein 1 (HMGB1): The prototypical
endogenous danger molecule. Mol Med 1(Suppl 21). S6–S12. 2015.
View Article : Google Scholar
|
14
|
Kornblit B, Munthe-Fog L, Madsen HO, Strøm
J, Vindeløv L and Garred P: Association of HMGB1 polymorphisms with
outcome in patients with systemic inflammatory response syndrome.
Crit Care. 12:R832008. View
Article : Google Scholar : PubMed/NCBI
|
15
|
Xueyang D, Zhanqiang M, Chunhua M and Kun
H: Fasudil, an inhibitor of Rho-associated coiled-coil kinase,
improves cognitive impairments induced by smoke exposure.
Oncotarget. 7:78764–78772. 2016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Komers R: Rho kinase inhibition in
diabetic kidney disease. Br J Clin Pharmacol. 76:551–559.
2013.PubMed/NCBI
|
17
|
Lu CC, Yang JS, Huang AC, Hsia TC, Chou
ST, Kuo CL, Lu HF, Lee TH, Wood WG and Chung JG: Chrysophanol
induces necrosis through the production of ROS and alteration of
ATP levels in J5 human liver cancer cells. Mol Nutr Food Res.
54:967–976. 2010. View Article : Google Scholar : PubMed/NCBI
|
18
|
Kim SJ, Kim MC, Lee BJ, Park DH, Hong SH
and Um JY: Anti-Inflammatory activity of chrysophanol through the
suppression of NF-kappaB/caspase-1 activation in vitro and in vivo.
Molecules. 15:6436–6451. 2010. View Article : Google Scholar : PubMed/NCBI
|
19
|
Wen Q, Mei L, Ye S, Liu X, Xu Q, Miao J,
Du S, Chen D, Li C and Li H: Chrysophanol demonstrates
anti-inflammatory properties in LPS-primed RAW 264.7 macrophages
through activating PPAR-γ. Int Immunopharmacol. 56:90–97. 2018.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Shiezadeh F, Mousavi SH, Amiri MS,
Iranshahi M, Tayarani-Najaran Z and Karimi G: Cytotoxic and
apoptotic potential of rheum turkestanicum janisch root extract on
human cancer and normal cells. Iran J Pharm Res. 12:811–819.
2013.PubMed/NCBI
|
21
|
Chang SJ, Huang SH, Lin YJ, Tsou YY and
Lin CW: Antiviral activity of Rheum palmatum methanol extract and
chrysophanol against Japanese encephalitis virus. Arch Pharm Res.
37:1117–1123. 2014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Zhi-Yun LI, Ming Z, Wei JI, et al:
Protective effect of chrysophanol on hypoxic injury of rat adrenal
medulla pheochromocytoma cells. Chin J Cerebrovascular Dis.
9:418–427. 2012.(In Chinese).
|
23
|
Zhang J, Yang S, Chen F, Li H and Chen B:
Ginkgetin aglycone ameliorates LPS-induced acute kidney injury by
activating SIRT1 via inhibiting the NF-κB signaling pathway. Cell
Biosci. 7:442017. View Article : Google Scholar : PubMed/NCBI
|
24
|
Qi Z, Zhang Y, Qi S, Ling L, Gui L, Yan L,
Lv J and Li Q: Salidroside inhibits HMGB1 acetylation and release
through upregulation of SirT1 during inflammation. Oxid Med Cell
Longev. 2017:98215432017. View Article : Google Scholar : PubMed/NCBI
|
25
|
Brownlee M: Biochemistry and molecular
cell biology of diabetic complications. Nature. 414:813–820. 2001.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Gerrity RG, Natarajan R, Nadler JL and
Kimsey T: Diabetes-induced accelerated atherosclerosis in swine.
Diabetes. 50:1654–1665. 2001. View Article : Google Scholar : PubMed/NCBI
|
27
|
He Q, Pu J, Yuan A, Yao T, Ying X, Zhao Y,
Xu L, Tong H and He B: Liver X receptor agonist treatment
attenuates cardiac dysfunction in type 2 diabetic db/db mice.
Cardiovasc Diabetol. 13:1492014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Bujak M and Frangogiannis NG: The role of
IL-1 in the pathogenesis of heart disease. Arch Immunol Ther Exp
(Warsz). 57:165–176. 2009. View Article : Google Scholar : PubMed/NCBI
|
29
|
Ohsuzu F: The roles of cytokines,
inflammation and immunity in vascular diseases. J Atheroscler
Thromb. 11:313–321. 2004. View Article : Google Scholar : PubMed/NCBI
|
30
|
Tanaka T, Narazaki M and Kishimoto T: IL-6
in inflammation, immunity, and disease. Cold Spring Harb Perspect
Biol. 6:a0162952014. View Article : Google Scholar : PubMed/NCBI
|
31
|
Yang H and Tracey KJ: Targeting HMGB1 in
inflammation. Biochim Biophys Acta. 1799:149–156. 2010. View Article : Google Scholar : PubMed/NCBI
|
32
|
Andersson U and Tracey KJ: HMGB1 Is a
therapeutic target for sterile inflammation and infection. Annu Rev
Immunol. 29:139–162. 2011. View Article : Google Scholar : PubMed/NCBI
|
33
|
Lotze MT and Tracey KJ: High-mobility
group box 1 protein (HMGB1): Nuclear weapon in the immune arsenal.
Nat Rev Immunol. 5:331–342. 2005. View Article : Google Scholar : PubMed/NCBI
|
34
|
Kauppinen A, Suuronen T, Ojala J,
Kaarniranta K and Salminen A: Antagonistic crosstalk between NF-kB
and SIRT1 in the regulation of inflammation and metabolic
disorders. Cell Signal. 25:1939–1948. 2013. View Article : Google Scholar : PubMed/NCBI
|
35
|
Salem ML, Hossain MS and Nomoto K:
Mediation of the immunomodulatory effect of beta-estradiol on
inflammatory responses by inhibition of recruitment and activation
of inflammatory cells and their gene expression of TNF-alpha and
IFN-gamma. Int Arch Allergy Immunol. 121:235–245. 2000. View Article : Google Scholar : PubMed/NCBI
|