1
|
Mol F, Mol BW, Ankum WM, van der Veen F
and Hajenius PJ: Current evidence on surgery, systemic methotrexate
and expectant management in the treatment of tubal ectopic
pregnancy: A systematic review and meta-analysis. Hum Reprod
Update. 14:309–319. 2008. View Article : Google Scholar : PubMed/NCBI
|
2
|
Herfarth HH, Long MD and Isaacs KL:
Methotrexate: Underused and ignored? Dig Dis. 30 (Suppl
3):S112–S118. 2012. View Article : Google Scholar
|
3
|
Cronstein BN: Low-dose methotrexate: A
mainstay in the treatment of rheumatoid arthritis. Pharmacol Rev.
57:163–172. 2005. View Article : Google Scholar : PubMed/NCBI
|
4
|
Tisman G and Wu SJ: Effectiveness of
intermediate-dose methotrexate and high-dose 5-fluorouracil as
sequential combination chemotherapy in refractory breast cancer and
as primary therapy in metastatic adenocarcinoma of the colon.
Cancer Treat Rep. 64:829–835. 1980.PubMed/NCBI
|
5
|
Bleyer WA: Methotrexate: Clinical
pharmacology, current status and therapeutic guidelines. Cancer
Treat Rev. 4:87–101. 1977. View Article : Google Scholar : PubMed/NCBI
|
6
|
Rajagopalan PT, Zhang Z, McCourt L, Dwyer
M, Benkovic SJ and Hammes GG: Interaction of dihydrofolate
reductase with methotrexate: Ensemble and single-molecule kinetics.
Proc Natl Acad Sci USA. 99:13481–13486. 2002. View Article : Google Scholar : PubMed/NCBI
|
7
|
Morgan SL, Baggott JE, Vaughn WH, Young
PK, Austin JV, Krumdieck CL and Alarcón GS: The effect of folic
acid supplementation on the toxicity of low-dose methotrexate in
patients with rheumatoid arthritis. Arthritis Rheum. 33:9–18. 1990.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2015. CA Cancer J Clin. 65:5–29. 2015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Schrag D, Cramer LD, Bach PB and Begg CB:
Age and adjuvant chemotherapy use after surgery for stage III colon
cancer. J Natl Cancer Inst. 93:850–857. 2001. View Article : Google Scholar : PubMed/NCBI
|
10
|
Cammà C, Giunta M, Fiorica F, Pagliaro L,
Craxì A and Cottone M: Preoperative radiotherapy for resectable
rectal cancer: A meta-analysis. JAMA. 284:1008–1015. 2000.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Nelson H, Petrelli N, Carlin A, Couture J,
Fleshman J, Guillem J, Miedema B, Ota D and Sargent D; National
Cancer Institute Expert Panel, : Guidelines 2000 for colon and
rectal cancer surgery. J Natl Cancer Inst. 93:583–596. 2001.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Marsh JC, Bertino JR, Katz KH, Davis CA,
Durivage HJ, Rome LS, Richards F II, Capizzi RL, Farber LR,
Pasquale DN, et al: The influence of drug interval on the effect of
methotrexate and fluorouracil in the treatment of advanced
colorectal cancer. J Clin Oncol. 9:371–380. 1991. View Article : Google Scholar : PubMed/NCBI
|
13
|
Cai Y, Yu X, Hu S and Yu J: A brief review
on the mechanisms of miRNA regulation. Genomics Proteomics
Bioinformatics. 7:147–154. 2009. View Article : Google Scholar : PubMed/NCBI
|
14
|
Weber G, Ichikawa S, Nagai M and Natsumeda
Y: Azidothymidine inhibition of thymidine kinase and synergistic
cytotoxicity with methotrexate and 5-fluorouracil in rat hepatoma
and human colon cancer cells. Cancer Commun. 2:129–133. 1990.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Van Mouwerik TJ, Pangallo CA, Willson JK
and Fischer PH: Augmentation of methotrexate cytotoxicity in human
colon cancer cells achieved through inhibition of thymidine salvage
by dipyridamole. Biochem Pharmacol. 36:809–814. 1987. View Article : Google Scholar : PubMed/NCBI
|
16
|
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW,
Shi W and Smyth GK: Limma powers differential expression analyses
for RNA-sequencing and microarray studies. Nucleic Acids Res.
43:e472015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Hsu SD, Lin FM, Wu WY, Liang C, Huang WC,
Chan WL, Tsai WT, Chen GZ, Lee CJ, Chiu CM, et al: miRTarBase: A
database curates experimentally validated microRNA-target
interactions. Nucleic Acids Res. 39((Database Issue)): D163–D169.
2011. View Article : Google Scholar : PubMed/NCBI
|
18
|
Shannon P, Markiel A, Ozier O, Baliga NS,
Wang JT, Ramage D, Amin N, Schwikowski B and Ideker T: Cytoscape: A
software environment for integrated models of biomolecular
interaction networks. Genome Res. 11:2498–5504. 2003. View Article : Google Scholar
|
19
|
John B, Enright AJ, Aravin A, Tuschl T,
Sander C and Marks DS: Human MicroRNA targets. PLoS Biol.
2:e3632004. View Article : Google Scholar : PubMed/NCBI
|
20
|
Lewis BP, Burge CB and Bartel DP:
Conserved seed pairing, often flanked by adenosines, indicates that
thousands of human genes are microRNA targets. Cell. 120:15–20.
2005. View Article : Google Scholar : PubMed/NCBI
|
21
|
Dweep H, Sticht C, Pandey P and Gretz N:
miRWalk-database: Prediction of possible miRNA binding sites by
‘walking’ the genes of three genomes. J Biomed Inform. 44:839–847.
2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Zhang SZ, Qiu XJ, Dong SS, Zhou LN, Zhu Y,
Wang MD and Jin LW: MicroRNA-770-5p is involved in the development
of diabetic nephropathy through regulating podocyte apoptosis by
targeting TP53 regulated inhibitor of apoptosis 1. Eur Rev Med
Pharmacol Sci. 23:1248–1256. 2019.PubMed/NCBI
|
23
|
Zhang JF, Zhang JS, Zhao ZH, Yang PB, Ji
SF, Li N, Shi QD, Tan J, Xu X, Xu CB and Zhao LY: MicroRNA-770
affects proliferation and cell cycle transition by directly
targeting CDK8 in glioma. Cancer Cell Int. 18:1952018. View Article : Google Scholar : PubMed/NCBI
|
24
|
Lee HC, Her NG, Kang D, Jung SH, Shin J,
Lee M, Bae IH, Kim YN, Park HJ, Ko YG and Lee JS:
Radiation-inducible miR-770-5p sensitizes tumors to radiation
through direct targeting of PDZ-binding kinase. Cell Death Dis.
8:e26932017. View Article : Google Scholar : PubMed/NCBI
|
25
|
Zhao H, Yu X, Ding Y, Zhao J, Wang G, Wu
X, Jiang J, Peng C, Guo GZ and Cui S: MiR-770-5p inhibits cisplatin
chemoresistance in human ovarian cancer by targeting ERCC2.
Oncotarget. 7:53254–53268. 2016.PubMed/NCBI
|
26
|
Belcheva A: MicroRNAs at the epicenter of
intestinal homeostasis. Bioessays. 39:2017. View Article : Google Scholar : PubMed/NCBI
|
27
|
Song H, Xu W, Song J, Liang Y, Fu W, Zhu
XC, Li C, Peng JS and Zheng JN: Overexpression of Lin28 inhibits
the proliferation, migration and cell cycle progression and induces
apoptosis of BGC-823 gastric cancer cells. Oncol Rep. 33:997–1003.
2015. View Article : Google Scholar : PubMed/NCBI
|
28
|
Im HI and Kenny PJ: MicroRNAs in neuronal
function and dysfunction. Trends Neurosci. 35:325–334. 2012.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Li H, Li B, Zhu D, Xie H, Du C, Xia Y and
Tang W: Downregulation of lncRNA MEG3 and miR-770-5p inhibit cell
migration and proliferation in Hirschsprung's disease. Oncotarget.
8:69722–69730. 2017.PubMed/NCBI
|
30
|
Choi CY, Kim YH, Kim YO, Park SJ, Kim EA,
Riemenschneider W, Gajewski K, Schulz RA and Kim Y: Phosphorylation
by the DHIPK2 protein kinase modulates the corepressor activity of
Groucho. J Biol Chem. 280:21427–21436. 2005. View Article : Google Scholar : PubMed/NCBI
|
31
|
Kim YH, Choi CY, Lee SJ, Conti MA and Kim
Y: Homeodomain-interacting protein kinases, a novel family of
co-repressors for homeodomain transcription factors. J Biol Chem.
273:25875–25879. 1998. View Article : Google Scholar : PubMed/NCBI
|
32
|
Sung KS, Go YY, Ahn JH, Kim YH, Kim Y and
Choi CY: Differential interactions of the homeodomain-interacting
protein kinase 2 (HIPK2) by phosphorylation-dependent sumoylation.
FEBS Lett. 579:3001–3008. 2005. View Article : Google Scholar : PubMed/NCBI
|
33
|
Zhang Q, Yoshimatsu Y, Hildebrand J,
Frisch SM and Goodman RH: Homeodomain interacting protein kinase 2
promotes apoptosis by downregulating the transcriptional
corepressor CtBP. Cell. 115:177–186. 2003. View Article : Google Scholar : PubMed/NCBI
|
34
|
Rey C, Soubeyran I, Mahouche I, Pedeboscq
S, Bessede A, Ichas F, De Giorgi F and Lartigue L: HIPK1 drives p53
activation to limit colorectal cancer cell growth. Cell Cycle.
12:1879–1891. 2013. View
Article : Google Scholar : PubMed/NCBI
|