1
|
Allemani C, Matsuda T, Di Carlo V,
Harewood R, Matz M, Nikšić M, Bonaventure A, Valkov M, Johnson CJ,
Estève J, et al: Global surveillance of trends in cancer survival
2000–14 (CONCORD-3): Analysis of individual records for 37 513 025
patients diagnosed with one of 18 cancers from 322 population-based
registries in 71 countries. Lancet. 391:1023–1075. 2018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2016. CA Cancer J Clin. 66:7–30. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Miller KD, Siegel RL, Lin CC, Mariotto AB,
Kramer JL, Rowland JH, Stein KD, Alteri R and Jemal A: Cancer
treatment and survivorship statistics, 2016. CA Cancer J Clin.
66:271–289. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Abu-Bakr El-Bayoumy AS, Hessien Keshta AT,
Sallam KM, Ebeid NH, Elsheikh HM and Bayoumy BE: Extraction,
purification of prostate-specific antigen (PSA), and establishment
of radioimmunoassay system as a diagnostic tool for prostate
disorders. J Immunoassay Immunochem. 39:12–29. 2018. View Article : Google Scholar : PubMed/NCBI
|
5
|
Caram ME, Skolarus TA and Cooney KA:
Limitations of prostate-specific antigen testing after a prostate
cancer diagnosis. Eur Urol. 70:209–210. 2016. View Article : Google Scholar : PubMed/NCBI
|
6
|
Amiya Y, Yamada Y, Sugiura M, Sasaki M,
Shima T, Suzuki N, Nakatsu H, Murakami S and Shimazaki J: Treatment
of locally advanced prostate cancer (Stage T3). Jpn J Clin Oncol.
47:257–261. 2017. View Article : Google Scholar : PubMed/NCBI
|
7
|
Levy S and Shoham T: The tetraspanin web
modulates immune-signalling complexes. Nat Rev Immunol. 5:136–148.
2005. View
Article : Google Scholar : PubMed/NCBI
|
8
|
Hemler ME: Tetraspanin functions and
associated microdomains. Nat Rev Mol Cell Biol. 6:801–811. 2005.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Bassani S and Cingolani LA: Tetraspanins:
Interactions and interplay with integrins. Int J Biochem Cell Biol.
44:703–708. 2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Oren R, Takahashi S, Doss C, Levy R and
Levy S: TAPA-1, the target of an antiproliferative antibody,
defines a new family of transmembrane proteins. Mol Cell Biol.
10:4007–4015. 1990. View Article : Google Scholar : PubMed/NCBI
|
11
|
Vences-Catalan F, Rajapaksa R, Srivastava
MK, Marabelle A, Kuo CC, Levy R and Levy S: Tetraspanin CD81, a
modulator of immune suppression in cancer and metastasis.
Oncoimmunology. 5:e11203992015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Vences-Catalan F, Duault C, Kuo CC,
Rajapaksa R, Levy R and Levy S: CD81 as a tumor target. Biochem Soc
Trans. 45:531–535. 2017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Zhang N, Zuo L, Zheng H, Li G and Hu X:
Increased expression of CD81 in breast cancer tissue is associated
with reduced patient prognosis and increased cell migration and
proliferation in MDA-MB-231 and MDA-MB-435S human breast cancer
cell lines in vitro. Med Sci Monit. 24:5739–5747. 2018. View Article : Google Scholar : PubMed/NCBI
|
14
|
Bettin A, Reyes I and Reyes N: Gene
expression profiling of prostate cancer-associated genes identifies
fibromodulin as potential novel biomarker for prostate cancer. Int
J Biol Markers. 31:e153–162. 2016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Mottet N, Bellmunt J, Bolla M, Briers E,
Cumberbatch MG, De Santis M, Fossati N, Gross T, Henry AM, Joniau
S, et al: EAU-ESTRO-SIOG guidelines on prostate cancer. Part 1:
Screening, diagnosis, and local treatment with curative intent. Eur
Urol. 71:618–629. 2017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Cornford P, Bellmunt J, Bolla M, Briers E,
De Santis M, Gross T, Henry AM, Joniau S, Lam TB, Mason MD, et al:
EAU-ESTRO-SIOG guidelines on prostate cancer. Part II: Treatment of
relapsing, metastatic, and castration-resistant prostate cancer.
Eur Urol. 71:630–642. 2017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Costa-Pinheiro P, Montezuma D, Henrique R
and Jeronimo C: Diagnostic and prognostic epigenetic biomarkers in
cancer. Epigenomics. 7:1003–1015. 2015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Narayan VM, Konety BR and Warlick C: Novel
biomarkers for prostate cancer: An evidence-based review for use in
clinical practice. Int J Urol. 24:352–360. 2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Fang E, Zhang X, Wang Q and Wang D:
Identification of prostate cancer hub genes and therapeutic agents
using bioinformatics approach. Cancer Biomark. 20:553–561. 2017.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Nandi D, Cheema PS, Jaiswal N and Nag A:
FoxM1: Repurposing an oncogene as a biomarker. Semin Cancer Biol.
52:74–84. 2018. View Article : Google Scholar : PubMed/NCBI
|
22
|
Liao SG, Cheng HH and Lei Y: C-reactive
protein is a prognostic marker for patients with
castration-resistant prostate cancer. Oncol Res Treat. 39:266–271.
2016. View Article : Google Scholar : PubMed/NCBI
|
23
|
Ma X, Du T, Zhu D, Chen X, Lai Y, Wu W,
Wang Q, Lin C, Li Z, Liu L and Huang H: High levels of glioma tumor
suppressor candidate region gene 1 predicts a poor prognosis for
prostate cancer. Oncol Lett. 16:6749–6755. 2018.PubMed/NCBI
|
24
|
Mu J, Fan L, Liu D and Zhu D:
Overexpression of shugoshin1 predicts a poor prognosis for prostate
cancer and promotes metastasis by affecting epithelial-mesenchymal
transition. OncoTargets Ther. 12:1111–1118. 2019. View Article : Google Scholar
|
25
|
Cui F, Hu J, Ning S, Tan J and Tang H:
Overexpression of MCM10 promotes cell proliferation and predicts
poor prognosis in prostate cancer. Prostate. 78:1299–1310. 2018.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Li T, Wang Q, Hong X, Li H, Yang K, Li J
and Lei B: RRBP1 is highly expressed in prostate cancer and
correlates with prognosis. Cancer Manag Res. 11:3021–3027. 2019.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Salem DA, Scott D, McCoy CS, Liewehr DJ,
Venzon DJ, Arons E, Kreitman RJ, Stetler-Stevenson M and Yuan CM:
Differential expression of CD43, CD81, and CD200 in classic versus
variant hairy cell leukemia. Cytometry B Clin Cytom. 96:275–282.
2019. View Article : Google Scholar : PubMed/NCBI
|
28
|
Yoo TH, Ryu BK, Lee MG and Chi SG: CD81 is
a candidate tumor suppressor gene in human gastric cancer. Cell
Oncol (Dordr). 36:141–153. 2013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Chen F, Hu Y, Wang X, Fu S, Liu Z and
Zhang J: Expression of CD81 and CD117 in plasma cell myeloma and
the relationship to prognosis. Cancer Med. 7:5920–5927. 2018.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Jiang X, Zhang J and Huang Y: Tetraspanins
in cell migration. Cell Adh Migr. 9:406–415. 2015. View Article : Google Scholar : PubMed/NCBI
|
31
|
Malla RR, Pandrangi S, Kumari S, Gavara MM
and Badana AK: Exosomal tetraspanins as regulators of cancer
progression and metastasis and novel diagnostic markers. Asia Pac J
Clin Oncol. 14:383–391. 2018. View Article : Google Scholar : PubMed/NCBI
|
32
|
Vences-Catalan F, Rajapaksa R, Srivastava
MK, Marabelle A, Kuo CC, Levy R and Levy S: Tetraspanin CD81
promotes tumor growth and metastasis by modulating the functions of
T regulatory and myeloid-derived suppressor cells. Cancer Res.
75:4517–4526. 2015. View Article : Google Scholar : PubMed/NCBI
|
33
|
Hong IK, Byun HJ, Lee J, Jin YJ, Wang SJ,
Jeoung DI, Kim YM and Lee H: The tetraspanin CD81 protein increases
melanoma cell motility by up-regulating metalloproteinase MT1-MMP
expression through the pro-oncogenic Akt-dependent Sp1 activation
signaling pathways. J Biol Chem. 289:15691–15704. 2014. View Article : Google Scholar : PubMed/NCBI
|
34
|
Luo RF, Zhao S, Tibshirani R, Myklebust
JH, Sanyal M, Fernandez R, Gratzinger D, Marinelli RJ, Lu ZS, Wong
A, et al: CD81 protein is expressed at high levels in normal
germinal center B cells and in subtypes of human lymphomas. Hum
Pathol. 41:271–280. 2010. View Article : Google Scholar : PubMed/NCBI
|