1
|
Johnell O and Kanis JA: An estimate of the
worldwide prevalence and disability associated with osteoporotic
fractures. Osteoporos Int. 17:1726–1733. 2006. View Article : Google Scholar : PubMed/NCBI
|
2
|
Editorial Board of Osteoporosis prevention
and treatment: (China White Paper). Chin J Health Manage.
3:148–154. 2009.(In Chinese).
|
3
|
Wang Y, Tao Y, Hyman ME, Li J and Chen Y:
Osteoporosis in China. Osteoporos Int. 20:1651–1662. 2009.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Zaidi M: Skeletal remodeling in health and
disease. Nat Med. 13:791–801. 2007. View
Article : Google Scholar : PubMed/NCBI
|
5
|
Ferron M, Wei J, Yoshizawa T, Fattore AD,
DePinho RA, Teti A, Ducy P and Karsenty G: Insulin signaling in
osteoblasts integrates bone remodeling and energy metabolism. Cell.
142:296–308. 2010. View Article : Google Scholar : PubMed/NCBI
|
6
|
Fulzele K, Riddle RC, DiGirolamo DJ, Cao
X, Wan C, Chen D, Faugere MC, Aja S, Hussain MA, Bruning JC and
Clemens TL: Insulin receptor signaling in osteoblasts regulates
postnatal bone acquisition and body composition. Cell. 142:309–319.
2010. View Article : Google Scholar : PubMed/NCBI
|
7
|
Yang J, Zhang X, Wang W and Liu J: Insulin
stimualtes osteoblast proliferation and differentiation through ERK
and PI3K in MG-63 cells. Cell Biochem Funct. 28:334–341. 2010.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Zhang W, Shen X, Wan C, Zhao Q, Zhang L,
Zhou Q and Deng L: Effects of insulin and insulin-like growth
factor 1 on osteoblast proliferation and differentiation:
Differential signaling via Akt and ERK. Cell Biochem Funct.
30:297–302. 2012. View
Article : Google Scholar : PubMed/NCBI
|
9
|
Oqata N, Chikazu D, Kubota N, Terauchi Y,
Tobe K, Azuma Y, Ohta T, Kadowaki T, Nakamura K and Kawaguchi H:
Insulin receptor substrate-1 in osteoblast is indispensable for
maintaining bone turnover. J Clin Invest. 105:935–943. 2000.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Akune T, Oqata N, Hoshi K, Kubota N,
Terauchi Y, Tobe K, Takagi H, Azuma Y, Kadowaki T, Nakamura K and
Kawaguchi H: Insulin receptor substrate-2 maintains predominance of
anabolic function over catabolic function of osteoblasts. J Cell
Biol. 159:147–156. 2002. View Article : Google Scholar : PubMed/NCBI
|
11
|
Huang C, Thirone AC, Huang X and Klip A:
Differential contribution of insulin receptor substrates 1 versus 2
to insulin signaling and glucose uptake in L6 myotubes. J Biol
Chem. 280:19426–19435. 2005. View Article : Google Scholar : PubMed/NCBI
|
12
|
Taniquchi CM, Emanuelli B and Kahn CR:
Critical nodes in signaling pathways: Insights into insulin action.
Nat Rev Mol Cell Biol. 7:85–96. 2006. View
Article : Google Scholar : PubMed/NCBI
|
13
|
Zhang ZQ, Zhang Y, Wang BX, Zhou HO, Wang
Y and Zhang H: Purification and partial characterization of
anti-inflammatory peptide from pilose antler of Cervus Nippon
Temminck. Yao Xue Xue Bao. 27:321–324. 1992.PubMed/NCBI
|
14
|
Zhang ZQ, Wang Y, Zhang H, Zhang W, Zhang
Y and Wang BX: Anti-inflammatory effects of pilose antler peptide.
Zhongguo Yao Li Xue Bao. 15:282–284. 1994.(In Chinese). PubMed/NCBI
|
15
|
Wu T, Yang L, Chen Y, Ni Y, Jiang J, Zhang
W, Zhou Q, Zheng X, Wang Q, Fu Z and Li H: Pilose antler
polypeptides ameliorates hypoxic-ischemic encephalopathy by
activated neurotrophic factors and SDF1/CXCR4 axis in rats. Acta
Biochim Biophys Sin (Shanghai). 50:254–262. 2018. View Article : Google Scholar : PubMed/NCBI
|
16
|
Bai L, Shi W, Liu J, Zhao X, Zhang Y, Zhou
Z, Hou W and Chang T: Protective effect of pilose antler peptide on
cerebral ischemia/reperfusion (I/R) injury througe Nrf-2/OH-1/NF-κB
pathway. Int J Biol Macromol. 102:741–748. 2017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Ma C, Long H, Yang C, Cai W, Zhang T and
Zhao W: Anti-inflammatory role of pilose antler peptide in
LPS-induced lung injury. Inflammation. 40:904–912. 2017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Chunhua M and Hongyan L: Protective effect
of pilose antler peptide on carbon tetrachloride-induced
hepatotoxicity in mice. Int J Biol Macromol. 99:648–654. 2017.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Chunhui Y, Wenjun C, Hui W, Liquan S,
Changwei Z, Tianzhu Z and Wenhai Z: Pilose antler peptide protects
osteoblasts from inflammatory and oxidative injury through EGF/EGFR
signaling. Int J Biol Macromol. 99:15–20. 2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Liu G, Ma C, Wang P, Zhang P, Qu X, Liu S,
Zhai Z, Yu D, Gao J, Liang J, et al: Pilose antler peptide
potentiates osteoblast differentiation and inhibits
osteoclastogenesis via manipulating the NF-κB pathway. Biochem
Biophys Res Commun. 491:388–395. 2017. View Article : Google Scholar : PubMed/NCBI
|
21
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Song L, Zhao J, Zhang X, Li H and Zhou Y:
Icariin induces osteoblast proliferation, differentiation and
mineralization through estrogen receptor-mediated ERK and JNK
signal activation. Eur J Pharmacol. 714:15–22. 2013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Starup-Linde J, Frost M, Vesterqaard P and
Abrahamsen B: Epidemiology of fractures in diabetes. Clacif Tissue
Int. 100:109–121. 2017. View Article : Google Scholar
|
24
|
Kemink SA, Hermus AR, Swinkels LM,
Lutterman JA and Smals AG: Osteopenia in insulin-dependent diabetes
mellitus; prevalence and aspects of pathophysiology. J Endocrinol
Invest. 23:295–303. 2000. View Article : Google Scholar : PubMed/NCBI
|
25
|
Duarte VM, Ramos AM, Rezende LA, Macedo
UB, Brandão-Neto J, Almeida MG and Rezende AA: Osteopenia: A bone
disorder associated with diabetes mellitus. J Bone Miner Metab.
23:58–68. 2005. View Article : Google Scholar : PubMed/NCBI
|
26
|
Bilotta FL, Arcidiacono B, Messineo S,
Greco M, Chiefari E, Britti D, Nakanishi T, Foti DP and Brunetti A:
Insulin and osteocaclin: Further evidence for a mutual cross-talk.
Endocrine. 59:622–632. 2018. View Article : Google Scholar : PubMed/NCBI
|