1
|
Scheperjans F, Aho V, Pereira PA, Koskinen
K, Paulin L, Pekkonen E, Haapaniemi E, Kaakkola S, Eerola-Rautio J,
Pohja M, et al: Gut microbiota are related to Parkinson's disease
and clinical phenotype. Mov Disord. 30:350–358. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Poewe W, Seppi K, Tanner CM, Halliday GM,
Brundin P, Volkmann J, Schrag AE and Lang AE: Parkinson disease.
Nat Rev Dis Primers. 3:170132017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Brettschneider J, Del Tredici K, Lee VM
and Trojanowski JQ: Spreading of pathology in neurodegenerative
diseases: A focus on human studies. Nat Rev Neurosci. 16:109–120.
2015. View
Article : Google Scholar : PubMed/NCBI
|
4
|
Luk KC, Kehm V, Carroll J, Zhang B,
O'Brien P, Trojanowski JQ and Lee VM: Pathological α-synuclein
transmission initiates Parkinson-like neurodegeneration in
nontransgenic mice. Science. 338:949–953. 2012. View Article : Google Scholar : PubMed/NCBI
|
5
|
Goldberg EL and Dixit VD: Drivers of
age-related inflammation and strategies for healthspan extension.
Immunol Rev. 265:63–74. 2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Pedersen M, Bruunsgaard H, Weis N, Hendel
HW, Andreassen BU, Eldrup E, Dela F and Pedersen BK: Circulating
levels of TNF-alpha and IL-6-relation to truncal fat mass and
muscle mass in healthy elderly individuals and in patients with
type-2 diabetes. Mech Ageing Dev. 124:495–502. 2003. View Article : Google Scholar : PubMed/NCBI
|
7
|
Ferrucci L, Corsi A, Lauretani F,
Bandinelli S, Bartali B, Taub DD, Guralnik JM and Longo DL: The
origins of age-related proinflammatory state. Blood. 105:2294–2299.
2005. View Article : Google Scholar : PubMed/NCBI
|
8
|
Patel MN, Carroll RG, Galván-Peña S, Mills
EL, Olden R, Triantafilou M, Wolf AI, Bryant CE, Triantafilou K and
Masters SL: Inflammasome priming in sterile inflammatory disease.
Trends Mol Med. 23:165–180. 2017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Lu A, Magupalli VG, Ruan J, Yin Q,
Atianand MK, Vos MR, Schröder GF, Fitzgerald KA, Wu H and Egelman
EH: Unified polymerization mechanism for the assembly of
ASC-dependent inflammasomes. Cell. 156:1193–1206. 2014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Guo C, Xie S, Chi Z, Zhang J, Liu Y, Zhang
L, Zheng M, Zhang X, Xia D, Ke Y, et al: Bile acids control
inflammation and metabolic disorder through inhibition of NLRP3
inflammasome. Immunity. 45:9442016. View Article : Google Scholar : PubMed/NCBI
|
11
|
Matsuo K, Cheng A, Yabuki Y, Takahata I,
Miyachi H and Fukunaga K: Inhibition of MPTP-induced α-synuclein
oligomerization by fatty acid-binding protein 3 ligand in
MPTP-treated mice. Neuropharmacology. 150:164–174. 2019. View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhang Y, Kim MS, Jia B, Yan J,
Zuniga-Hertz JP, Han C and Cai D: Hypothalamic stem cells control
ageing speed partly through exosomal miRNAs. Nature. 548:52–57.
2017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Zhang G, Li J, Purkayastha S, Tang Y,
Zhang H, Yin Y, Li B, Liu G and Cai D: Hypothalamic programming of
systemic ageing involving IKK-β, NF-κB and GnRH. Nature.
497:211–216. 2013. View Article : Google Scholar : PubMed/NCBI
|
14
|
Lamkanfi M and Dixit VM: Mechanisms and
functions of inflammasomes. Cell. 157:1013–1022. 2014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Youm YH, Grant RW, McCabe LR, Albarado DC,
Nguyen KY, Ravussin A, Pistell P, Newman S, Carter R, Laque A, et
al: Canonical Nlrp3 inflammasome links systemic low-grade
inflammation to functional decline in aging. Cell Metab.
18:519–532. 2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Gershanik OS: Past, present, and future of
Parkinson's disease. Mov Disord. 32:12632017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Norris EH, Giasson BI and Lee VM:
Alpha-synuclein: Normal function and role in neurodegenerative
diseases. Curr Top Dev Biol. 60:17–54. 2004. View Article : Google Scholar : PubMed/NCBI
|
18
|
Ma QL, Chan P, Yoshii M and Uéda K:
Alpha-synuclein aggregation and neurodegenerative diseases. J
Alzheimers Dis. 5:139–148. 2003. View Article : Google Scholar : PubMed/NCBI
|
19
|
Lee HJ, Suk JE, Patrick C, Bae EJ, Cho JH,
Rho S, Hwang D, Masliah E and Lee SJ: Direct transfer of
α-synuclein from neuron to astroglia causes inflammatory responses
in synucleinopathies. J Biol Chem. 285:9262–9272. 2010. View Article : Google Scholar : PubMed/NCBI
|
20
|
Ma D, Jin S, Li E, Doi Y, Parajuli B, Noda
M, Sonobe Y, Mizuno T and Suzumura A: The neurotoxic effect of
astrocytes activated with toll-like receptor ligands. J
Neuroimmunol. 254:10–18. 2013. View Article : Google Scholar : PubMed/NCBI
|
21
|
Abdelkarim H, Marshall MS, Scesa G, Smith
RA, Rue E, Marshall J, Elackattu V, Stoskute M, Issa Y, Santos M,
et al: α-Synuclein interacts directly but reversibly with
psychosine: Implications for α-synucleinopathies. Sci Rep.
8:124622018. View Article : Google Scholar : PubMed/NCBI
|
22
|
Mori F, Tanji K, Yoshimoto M, Takahashi H
and Wakabayashi K: Demonstration of α-synuclein immunoreactivity in
neuronal and glial cytoplasm in normal human brain tissue using
proteinase K and formic acid pretreatment. Exp Neurol. 176:98–104.
2002. View Article : Google Scholar : PubMed/NCBI
|
23
|
Deleidi M and Isacson O: Viral and
inflammatory triggers of neurodegenerative diseases. Sci Transl
Med. 4:121ps32012. View Article : Google Scholar : PubMed/NCBI
|
24
|
McGeer PL, Itagaki S, Boyes BE and McGeer
EG: Reactive microglia are positive for HLA-DR in the substantia
nigra of Parkinson's and Alzheimer's disease brains. Neurology.
38:1285–1291. 1988. View Article : Google Scholar : PubMed/NCBI
|
25
|
Park J, Wang Q, Wu Q, Mao-Draayer Y and
Kim CH4: Bidirectional regulatory potentials of short-chain fatty
acids and their G-protein-coupled receptors in autoimmune
neuroinflammation. Sci Rep. 9:88372019. View Article : Google Scholar : PubMed/NCBI
|
26
|
Roodveldt C, Labrador-Garrido A,
Gonzalez-Rey E, Lachaud CC, Guilliams T, Fernandez-Montesinos R,
Benitez-Rondan A, Robledo G, Hmadcha A, Delgado M, et al:
Preconditioning of microglia by α-synuclein strongly affects the
response induced by toll-like receptor (TLR) stimulation. PLoS One.
8:e791602013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Uryu K, Chen XH, Martinez D, Browne KD,
Johnson VE, Graham DI, Lee VM, Trojanowski JQ and Smith DH:
Multiple proteins implicated in neurodegenerative diseases
accumulate in axons after brain trauma in humans. Exp Neurol.
208:185–192. 2007. View Article : Google Scholar : PubMed/NCBI
|
28
|
Picard F, de Saint-Martin A, Salmon E,
Hirsch E and Marescaux C: Postencephalitic stereotyped involuntary
movements responsive to L-Dopa. Mov Disord. 11:567–570. 1996.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Ros-Bernal F, Hunot S, Herrero MT,
Parnadeau S, Corvol JC, Lu L, Alvarez-Fischer D, Carrillo-de
Sauvage MA, Saurini F, Coussieu C, et al: Microglial glucocorticoid
receptors play a pivotal role in regulating dopaminergic
neurodegeneration in parkinsonism. Proc Natl Acad Sci USA.
108:6632–6637. 2011. View Article : Google Scholar : PubMed/NCBI
|
30
|
Depino AM, Earl C, Kaczmarczyk E, Ferrari
C, Besedovsky H, del Rey A, Pitossi FJ and Oertel WH: Microglial
activation with atypical proinflammatory cytokine expression in a
rat model of Parkinson's disease. Eur J Neurosci. 18:2731–2742.
2003. View Article : Google Scholar : PubMed/NCBI
|
31
|
Gao HM, Kotzbauer PT, Uryu K, Leight S,
Trojanowski JQ and Lee VM: Neuroinflammation and
oxidation/nitration of alpha-synuclein linked to dopaminergic
neurodegeneration. J Neurosci. 28:7687–7698. 2008. View Article : Google Scholar : PubMed/NCBI
|
32
|
Fan LW, Tien LT, Lin RC, Simpson KL,
Rhodes PG and Cai Z: Neonatal exposure to lipopolysaccharide
enhances vulnerability of nigrostriatal dopaminergic neurons to
rotenone neurotoxicity in later life. Neurobiol Dis. 44:304–316.
2011. View Article : Google Scholar : PubMed/NCBI
|
33
|
Pott Godoy MC, Tarelli R, Ferrari CC,
Sarchi MI and Pitossi FJ: Central and systemic IL-1 exacerbates
neurodegeneration and motor symptoms in a model of Parkinson's
disease. Brain. 131:1880–1894. 2008. View Article : Google Scholar : PubMed/NCBI
|
34
|
Koprich JB, Reske-Nielsen C, Mithal P and
Isacson O: Neuroinflammation mediated by IL-1beta increases
susceptibility of dopamine neurons to degeneration in an animal
model of Parkinson's disease. J Neuroinflammation. 5:82008.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Deleidi M, Hallett PJ, Koprich JB, Chung
CY and Isacson O: The Toll-like receptor-3 agonist
polyinosinic:polycytidylic acid triggers nigrostriatal dopaminergic
degeneration. J Neurosci. 30:16091–16101. 2010. View Article : Google Scholar : PubMed/NCBI
|
36
|
Dzamko N, Gysbers A, Perera G, Bahar A,
Shankar A, Gao J, Fu Y and Halliday GM: Toll-like receptor 2 is
increased in neurons in Parkinson's disease brain and may
contribute to alpha-synuclein pathology. Acta Neuropathol.
133:303–319. 2017. View Article : Google Scholar : PubMed/NCBI
|
37
|
Zhong Z, Umemura A, Sanchez-Lopez E, Liang
S, Shalapour S, Wong J, He F, Boassa D, Perkins G, Ali SR, et al:
NF-κB restricts inflammasome activation via elimination of damaged
mitochondria. Cell. 164:896–910. 2016. View Article : Google Scholar : PubMed/NCBI
|
38
|
Qiao C, Yin N, Gu HY, Zhu JL, Ding JH, Lu
M and Hu G: Atp13a2 deficiency aggravates astrocyte-mediated
neuroinflammation via NLRP3 inflammasome activation. CNS Neurosci
Ther. 22:451–460. 2016. View Article : Google Scholar : PubMed/NCBI
|
39
|
Sun L, Lian Y, Ding J, Meng Y, Li C, Chen
L and Qiu P: The role of chaperone-mediated autophagy in
neurotoxicity induced by alpha-synuclein after methamphetamine
exposure. Brain Behav. 9:e013522019. View Article : Google Scholar : PubMed/NCBI
|
40
|
Han X, Sun S, Sun Y, Song Q, Zhu J, Song
N, Chen M, Sun T, Xia M, Ding J, et al: Small molecule-driven NLRP3
inflammation inhibition via interplay between ubiquitination and
autophagy: Implications for Parkinson disease. Autophagy.
15:1860–1881. 2019. View Article : Google Scholar : PubMed/NCBI
|