1
|
Nolan JP, Neumar RW, Adrie C, Aibiki M,
Berg RA, Bbttiger BW, Callaway C, Clark RS, Geocadin RG, Jauch EC,
et al: Post-cardiac arrest syndrome: epidemiology, pathophysiology,
treatment, and prognostication: A scientific statement from the
International Liaison Committee on Resuscitation; the American
Heart Association Emergency Cardiovascular Care Committee; the
Council on Cardiovascular Surgery and Anesthesia; the Council on
Cardiopulmonary, Perioperative, and Critical Care; the Council on
Clinical Cardiology; the Council on Stroke (Part II). Int Emerg
Nurs. 18:8–28. 2010. View Article : Google Scholar : PubMed/NCBI
|
2
|
Moseby-Knappe M, Pellis T, Dragancea I,
Friberg H, Nielsen N, Horn J, Kuiper M, Roncarati A, Siemund R,
Undén J, et al: Head computed tomography for prognostication of
poor outcome in comatose patients after cardiac arrest and targeted
temperature management. Resuscitation. 119:89–94. 2017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Duez CHV, Grejs AM, Jeppesen AN, Schroder
AD, Søreide E, Nielsen JF and Kirkegaard H: Neuron-specific enolase
and S-100b in prolonged targeted temperature management after
cardiac arrest: A randomised study. Resuscitation. 122:79–86. 2018.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Hawkes MA and Rabinstein AA: Neurological
prognostication after cardiac arrest in the era of target
temperature management. Curr Neurol Neurosci Rep. 19:102019.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Scheeren TWL, Kuizenga MH, Maurer H,
Struys MMRF and Heringlake M: Electroencephalography and brain
oxygenation monitoring in the perioperative period. Anesth Analg.
128:265–277. 2019. View Article : Google Scholar : PubMed/NCBI
|
6
|
Singer AJ, Ahn A, Inigo-Santiago LA, Thode
HC Jr, Henry MC and Parnia S: Cerebral oximetry levels during CPR
are associated with return of spontaneous circulation following
cardiac arrest: An observational study. Emerg Med J. 32:353–356.
2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Cournoyer A, Iseppon M, Chauny JM, Denault
A, Cossette S and Notebaert E: Near-infrared spectroscopy
monitoring during cardiac arrest: A systematic review and
meta-analysis. Acad Emerg Med. 23:851–862. 2016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Ibrahim AW, Trammell AR, Austin H, Barbour
K, Onuorah E, House D, Miller HL, Tutt C, Combs D, Phillips R, et
al: Cerebral oximetry as a real-time monitoring tool to assess
quality of in-hospital cardiopulmonary resuscitation and post
cardiac arrest care. J Am Heart Assoc. 4:e0018592015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Bougle A, Daviaud F, Bougouin W, Rodrigues
A, Geri G, Morichau-Beauchant T, Lamhaut L, Dumas F and Cariou A:
Determinants and significance of cerebral oximetry after cardiac
arrest: A prospective cohort study. Resuscitation. 99:1–6. 2016.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Kinoshita K, Sakurai A and Ihara S: The
pitfalls of bedside regional cerebral oxygen saturation in the
early stage of post cardiac arrest. Scand J Trauma Resusc Emerg
Med. 23:952015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Nolan JP, Soar J, Cariou A, Cronberg T,
Moulaert VR, Deakin CD, Bottiger BW, Friberg H, Sunde K and
Sandroni C: European resuscitation council and european society of
intensive care medicine guidelines for post-resuscitation care
2015: Section 5 of the european resuscitation council guidelines
for resuscitation 2015. Resuscitation. 95:202–222. 2015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Nielsen N, Wetterslev J, Cronberg T,
Erlinge D, Gasche Y, Hassager C, Horn J, Hovdenes J, Kjaergaard J,
Kuiper M, et al: Targeted temperature management at 33°C versus
36°C after cardiac arrest. N Engl J Med. 369:2197–2206. 2013.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Wolfle TL: 50 years of the Institute for
Laboratory Animal Research (ILAR): 1953–2003. ILAR J. 44:324–337.
2003. View Article : Google Scholar : PubMed/NCBI
|
14
|
Nemzek JA, Xiao HY, Minard AE, Bolgos GL
and Remick DG: Humane endpoints in shock research. Shock. 21:17–25.
2004. View Article : Google Scholar : PubMed/NCBI
|
15
|
Xu J, Jin X, Chen Q, Wu C, Li Z, Zhou G,
Xu Y, Qian A, Li Y and Zhang M: Faster hypothermia induced by
esophageal cooling improves early markers of cardiac and
neurological injury after cardiac arrest in swine. J Am Heart
Assoc. 7:e0102832018. View Article : Google Scholar : PubMed/NCBI
|
16
|
Xu J, Chen Q, Jin X, Wu C, Li Z, Zhou G,
Xu Y, Qian A, Li Y and Zhang M: Early initiation of continuous
renal replacement therapy induces fast hypothermia and improves
post-cardiac arrest syndrome in a porcine model. Shock. 52:456–467.
2019. View Article : Google Scholar : PubMed/NCBI
|
17
|
Myat A, Song KJ and Rea T: Out-of-hospital
cardiac arrest: Current concepts. Lancet. 391:970–979. 2018.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Prosen G, Strnad M, Doniger SJ, Markota A,
Stožer A, Borovnik-Lesjak V and Mekiš D: Cerebral tissue oximetry
levels during prehospital management of cardiac arrest-A
prospective observational study. Resuscitation. 129:141–145. 2018.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Kuzhuget R, Starodubtsev V, Ignatenko P,
Starodubtseva A, Voroshilina O, Ruzankin P and Karpenko A: The role
of stump pressure and cerebral oximetry in predicting ischaemic
brain damage during carotid endarterectomy. Brain Inj.
31:1944–1950. 2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Sanchez-de-Toledo J, Chrysostomou C, Munoz
R, Lichtenstein S, Sao-Avilés CA, Wearden PD, Morell VO, Clark RS,
Toney N and Bell MJ: Cerebral regional oxygen saturation and serum
neuromarkers for the prediction of adverse neurologic outcome in
pediatric cardiac surgery. Neurocrit Care. 21:133–139. 2014.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Calderon LM, Guyette FX, Doshi AA,
Callaway CW and Rittenberger JC; Post Cardiac Arrest Service, :
Combining NSE and S100B with clinical examination findings to
predict survival after resuscitation from cardiac arrest.
Resuscitation. 85:1025–1029. 2014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Böttiger BW, Möbes S, Glätzer R, Bauer H,
Gries A, Bärtsch P, Motsch J and Martin E: Astroglial protein S-100
is an early and sensitive marker of hypoxic brain damage and
outcome after cardiac arrest in humans. Circulation. 103:2694–2698.
2001. View Article : Google Scholar : PubMed/NCBI
|
23
|
Stocchetti N, Le Roux P, Vespa P, Oddo M,
Citerio G, Andrews PJ, Stevens RD, Sharshar T, Taccone FS and
Vincent JL: Clinical review: Neuromonitoring-an update. Crit Care.
17:2012013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Pollard V, Prough DS, DeMelo AE, Deyo DJ,
Uchida T and Stoddart HF: Validation in volunteers of a
near-infrared spectroscope for monitoring brain oxygenation in
vivo. Anesth Analg. 82:269–277. 1996. View Article : Google Scholar : PubMed/NCBI
|
25
|
McCormick PW, Stewart M, Ray P, Lewis G,
Dujovny M and Ausman JI: Measurement of regional cerebrovascular
haemoglobin oxygen saturation in cats using optical spectroscopy.
Neurol Res. 13:65–70. 1991. View Article : Google Scholar : PubMed/NCBI
|
26
|
De Backer D, Ospina-Tascon G, Salgado D,
Favory R, Creteur J and Vincent JL: Monitoring the microcirculation
in the critically ill patient: Current methods and future
approaches. Intensive Care Med. 36:1813–1825. 2010. View Article : Google Scholar : PubMed/NCBI
|
27
|
Wik L: Near-infrared spectroscopy during
cardiopulmonary resuscitation and after restoration of spontaneous
circulation: A valid technology? Curr Opin Crit Care. 22:191–198.
2016. View Article : Google Scholar : PubMed/NCBI
|
28
|
Genbrugge C, Eertmans W, Meex I, Van
Kerrebroeck M, Daems N, Creemers A, Jans F, Boer W, Dens J and De
Deyne C: What is the value of regional cerebral saturation in
post-cardiac arrest patients? A prospective observational study.
Crit Care. 20:3272016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Meex I, Dens J, Jans F, Boer W, Vanhengel
K, Vundelinckx G, Heylen R and De Deyne C: Cerebral tissue oxygen
saturation during therapeutic hypothermia in post-cardiac arrest
patients. Resuscitation. 84:788–793. 2013. View Article : Google Scholar : PubMed/NCBI
|
30
|
Abdul-Khaliq H, Schubert S, Troitzsch D,
Huebler M, Boettcher W, Baur MO and Lange PE: Dynamic changes in
cerebral oxygenation related to deep hypothermia and circulatory
arrest evaluated by near-infrared spectroscopy. Acta Anaesthesiol
Scand. 45:696–701. 2001. View Article : Google Scholar : PubMed/NCBI
|
31
|
Lee JK, Brady KM, Mytar JO, Kibler KK,
Carter EL, Hirsch KG, Hogue CW, Easley RB, Jordan LC, Smielewski P,
et al: Cerebral blood flow and cerebrovascular autoregulation in a
swine model of pediatric cardiac arrest and hypothermia. Crit Care
Med. 39:2337–2345. 2011. View Article : Google Scholar : PubMed/NCBI
|
32
|
Genbrugge C, De Deyne C, Eertmans W,
Anseeuw K, Voet D, Mertens I, Sabbe M, Stroobants J, Bruckers L,
Mesotten D, et al: Cerebral saturation in cardiac arrest patients
measured with near-infrared technology during pre-hospital advanced
life support. Results from Copernicus I cohort study.
Resuscitation. 129:107–113. 2018. View Article : Google Scholar : PubMed/NCBI
|
33
|
Hegnauer AH and D'Amato HE: Oxygen
consumption and cardiac output in the hypothermic dog. Am J
Physiol. 178:138–142. 1954. View Article : Google Scholar : PubMed/NCBI
|
34
|
Mezrow CK, Sadeghi AM, Gandsas A, Shiang
HH, Levy D, Green R, Holzman IR and Griepp RB: Cerebral blood flow
and metabolism in hypothermic circulatory arrest. Ann Thorac Surg.
54:609–615. 1992. View Article : Google Scholar : PubMed/NCBI
|
35
|
Busto R, Globus MY, Dietrich WD, Martinez
E, Valdes I and Ginsberg MD: Effect of mild hypothermia on
ischemia-induced release of neurotransmitters and free fatty acids
in rat brain. Stroke. 20:904–910. 1989. View Article : Google Scholar : PubMed/NCBI
|
36
|
Chopp M, Knight R, Tidwell CD, Helpern JA,
Brown E and Welch KM: The metabolic effects of mild hypothermia on
global cerebral ischemia and recirculation in the cat: Comparison
to normothermia and hyperthermia. J Cereb Blood Flow Metab.
9:141–148. 1989. View Article : Google Scholar : PubMed/NCBI
|
37
|
Nakatani Y, Nakayama T, Nishiyama K and
Takahashi Y: Effect of target temperature management at 32–34°C in
cardiac arrest patients considering assessment by regional cerebral
oxygen saturation: A multicenter retrospective cohort study.
Resuscitation. 126:185–190. 2018. View Article : Google Scholar : PubMed/NCBI
|
38
|
Ostadal P, Mlcek M, Kruger A, Horakova S,
Skabradova M, Holy F, Svoboda T, Belohlavek J, Hrachovina V,
Taborsky L, et al: Mild therapeutic hypothermia is superior to
controlled normothermia for the maintenance of blood pressure and
cerebral oxygenation, prevention of organ damage and suppression of
oxidative stress after cardiac arrest in a porcine model. J Transl
Med. 11:1242013. View Article : Google Scholar : PubMed/NCBI
|
39
|
Lu X, Ma L, Sun S, Xu J, Zhu C and Tang W:
The effects of the rate of postresuscitation rewarming following
hypothermia on outcomes of cardiopulmonary resuscitation in a rat
model. Crit Care Med. 42:e106–e113. 2014. View Article : Google Scholar : PubMed/NCBI
|
40
|
Kim JH, Kim MJ, You JS, Lee HS, Park YS,
Park I and Chung SP: Multimodal approach for neurologic
prognostication of out-of-hospital cardiac arrest patients
undergoing targeted temperature management. Resuscitation.
134:33–40. 2019. View Article : Google Scholar : PubMed/NCBI
|