1
|
Lusis AJ: Atherosclerosis. Nature.
407:233–241. 2000. View
Article : Google Scholar : PubMed/NCBI
|
2
|
Zhu Y, Xian X, Wang Z, Bi Y, Chen Q, Han
X, Tang D and Chen R: Research progress on the relationship between
atherosclerosis and inflammation. Biomolecules. 8(pii): E802018.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Jiang Q, Hao R, Wang W, Gao H and Wang C:
SIRT1/Atg5/autophagy are involved in the antiatherosclerosis
effects of ursolic acid. Mol Cell Biochem. 420:171–184. 2016.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Mialet-Perez J and Vindis C: Autophagy in
health and disease: Focus on the cardiovascular system. Essays
Biochem. 61:721–732. 2017. View Article : Google Scholar : PubMed/NCBI
|
5
|
Bravo-San Pedro JM, Kroemer G and Galluzzi
L: Autophagy and mitophagy in cardiovascular disease. Circ Res.
120:1812–1824. 2017. View Article : Google Scholar : PubMed/NCBI
|
6
|
Sasaki Y, Ikeda Y, Iwabayashi M, Akasaki Y
and Ohishi M: The impact of autophagy on cardiovascular senescence
and diseases. Int Heart J. 58:666–673. 2017. View Article : Google Scholar : PubMed/NCBI
|
7
|
Grootaert MOJ, Roth L, Schrijvers DM, De
Meyer GRY and Martinet W: Defective autophagy in atherosclerosis:
To die or to senesce? Oxid Med Cell Longev. 2018:76870832018.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Vion AC, Kheloufi M, Hammoutene A, Poisson
J, Lasselin J, Devue C, Pic I, Dupont N, Busse J, Stark K, et al:
Autophagy is required for endothelial cell alignment and
atheroprotection under physiological blood flow. Proc Natl Acad Sci
USA. 114:E8675–E8684. 2017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Sergin I, Evans TD, Zhang X, Bhattacharya
S, Stokes CJ, Song E, Ali S, Dehestani B, Holloway KB, Micevych PS,
et al: Exploiting macrophage autophagy-lysosomal biogenesis as a
therapy for atherosclerosis. Nat Commun. 8:157502017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Evans TD, Jeong SJ, Zhang X, Sergin I and
Razani B: TFEB and trehalose drive the macrophage
autophagy-lysosome system to protect against atherosclerosis.
Autophagy. 14:724–726. 2018. View Article : Google Scholar : PubMed/NCBI
|
11
|
Lazaro I, Lopez-Sanz L, Bernal S, Oguiza
A, Recio C, Melgar A, Jimenez-Castilla L, Egido J, Madrigal-Matute
J and Gomez-Guerrero C: Nrf2 activation provides atheroprotection
in diabetic mice through concerted upregulation of antioxidant,
anti-inflammatory, and autophagy Mechanisms. Front Pharmacol.
9:8192018. View Article : Google Scholar : PubMed/NCBI
|
12
|
Li X, Zhou Y, Zhang X, Cao X, Wu C and Guo
P: Cordycepin stimulates autophagy in macrophages and prevents
atherosclerotic plaque formation in ApoE−/− mice.
Oncotarget. 8:94726–94737. 2017.PubMed/NCBI
|
13
|
Tang F and Yang TL: MicroRNA-126
alleviates endothelial cells injury in atherosclerosis by restoring
autophagic flux via inhibiting of PI3K/Akt/mTOR pathway. Biochem
Biophys Res Commun. 495:1482–1489. 2018. View Article : Google Scholar : PubMed/NCBI
|
14
|
Yang X, Wei J, He Y, Jing T, Li Y, Xiao Y,
Wang B, Wang W, Zhang J and Lin R: SIRT1 inhibition promotes
atherosclerosis through impaired autophagy. Oncotarget.
8:51447–51461. 2017.PubMed/NCBI
|
15
|
Li W, Sultana N, Siraj N, Ward LJ, Pawlik
M, Levy E, Bengtsson E and Yuan XM: Autophagy dysfunction and
regulatory cystatin C in macrophage death of atherosclerosis. J
Cell Mol Med. 20:1664–1672. 2016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Grootaert MO, da Costa Martins PA, Bitsch
N, Pintelon I, De Meyer GR, Martinet W and Schrijvers DM: Defective
autophagy in vascular smooth muscle cells accelerates senescence
and promotes neointima formation and atherogenesis. Autophagy.
11:2014–2032. 2015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Osonoi Y, Mita T, Azuma K, Nakajima K,
Masuyama A, Goto H, Nishida Y, Miyatsuka T, Fujitani Y, Koike M, et
al: Defective autophagy in vascular smooth muscle cells enhances
cell death and atherosclerosis. Autophagy. 14:1991–2006. 2018.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Ouimet M, Ediriweera H, Afonso MS,
Ramkhelawon B, Singaravelu R, Liao X, Bandler RC, Rahman K, Fisher
EA, Rayner KJ, et al: microRNA-33 regulates macrophage autophagy in
atherosclerosis. Arterioscler Thromb Vasc Biol. 37:1058–1067. 2017.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Chen PS, Wang KC, Chao TH, Chung HC, Tseng
SY, Luo CY, Shi GY, Wu HL and Li YH: Recombinant thrombomodulin
exerts anti-autophagic action in endothelial cells and provides
anti-atherosclerosis effect in apolipoprotein E deficient mice. Sci
Rep. 7:32842017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Dai S, Wang B, Li W, Wang L, Song X, Guo
C, Li Y, Liu F, Zhu F, Wang Q, et al: Systemic application of
3-methyladenine markedly inhibited atherosclerotic lesion in
ApoE−/− mice by modulating autophagy, foam cell
formation and immune-negative molecules. Cell Death Dis.
7:e24982016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Zachari M and Ganley IG: The mammalian
ULK1 complex and autophagy initiation. Essays Biochem. 61:585–596.
2017. View Article : Google Scholar : PubMed/NCBI
|
22
|
Egan DF, Chun MG, Vamos M, Zou H, Rong J,
Miller CJ, Lou HJ, Raveendra-Panickar D, Yang CC, Sheffler DJ, et
al: Small molecule inhibition of the autophagy kinase ULK1 and
identification of ULK1 substrates. Mol Cell. 59:285–297. 2015.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Dite TA, Langendorf CG, Hoque A, Galic S,
Rebello RJ, Ovens AJ, Lindqvist LM, Ngoei KRW, Ling NXY, Furic L,
et al: AMP-activated protein kinase selectively inhibited by the
type II inhibitor SBI-0206965. J Biol Chem. 293:8874–8885. 2018.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Tang F, Hu P, Yang Z, Xue C, Gong J, Sun
S, Shi L, Zhang S, Li Z, Yang C, et al: SBI0206965, a novel
inhibitor of Ulk1, suppresses non-small cell lung cancer cell
growth by modulating both autophagy and apoptosis pathways. Oncol
Rep. 37:3449–3458. 2017. View Article : Google Scholar : PubMed/NCBI
|
25
|
Dong G, Si C, Zhang Q, Yan F, Li C, Zhang
H, Ma Q, Dai J, Li Z, Shi H, et al: Autophagy regulates
accumulation and functional activity of granulocytic
myeloid-derived suppressor cells via STAT3 signaling in endotoxin
shock. Biochim Biophys Acta. 1863:2796–2807. 2017. View Article : Google Scholar
|
26
|
Foks AC, Van Puijvelde GH, Wolbert J,
Kröner MJ, Frodermann V, Van Der Heijden T, Van Santbrink PJ, Boon
L, Bot I and Kuiper J: CD11b+Gr-1+
myeloid-derived suppressor cells reduce atherosclerotic lesion
development in LDLr deficient mice. Cardiovasc Res. 111:252–261.
2016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Nakatsu N, Igarashi Y, Aoshi T, Hamaguchi
I, Saito M, Mizukami T, Momose H, Ishii KJ and Yamada H: Isoflurane
is a suitable alternative to ether for anesthetizing rats prior to
euthanasia for gene expression analysis. J Toxicol Sci. 42:491–497.
2017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Akeju O, Hamilos AE, Song AH, Pavone KJ,
Purdon PL and Brown EN: GABAA circuit mechanisms are associated
with ether anesthesia-induced unconsciousness. Clin Neurophysiol.
127:2472–2481. 2016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Shaikh F, He J, Bhadra P, Chen X and Siu
SWI: TNF receptor type II as an emerging drug target for the
treatment of cancer, autoimmune diseases, and graft-vs.-host
disease: Current perspectives and in silico search for small
molecule binders. Front Immunol. 9:13822018. View Article : Google Scholar : PubMed/NCBI
|
30
|
Boros P, Ochando J and Zeher M: Myeloid
derived suppressor cells and autoimmunity. Hum Immunol. 77:631–636.
2016. View Article : Google Scholar : PubMed/NCBI
|
31
|
Shi H, Dong G, Yan F, Zhang H, Li C, Ma Q,
Zhang J, Ning Z, Li Z, Dai J, et al: Arctigenin Ameliorates
inflammation by regulating accumulation and functional activity of
MDSCs in endotoxin shock. Inflammation. 41:2090–2100. 2018.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Elliott DM, Singh N, Nagarkatti M and
Nagarkatti PS: Cannabidiol attenuates experimental autoimmune
encephalomyelitis model of multiple sclerosis through induction of
myeloid-derived suppressor cells. Front Immunol. 9:17822018.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Casacuberta-Serra S, Costa C, Eixarch H,
Mansilla MJ, López-Estévez S, Martorell L, Parés M, Montalban X,
Espejo C and Barquinero J: Myeloid-derived suppressor cells
expressing a self-antigen ameliorate experimental autoimmune
encephalomyelitis. Exp Neurol. 286:50–60. 2016. View Article : Google Scholar : PubMed/NCBI
|
34
|
Hsieh CC, Lin CL, He JT, Chiang M, Wang Y,
Tsai YC, Hung CH and Chang PJ: Administration of cytokine-induced
myeloid-derived suppressor cells ameliorates renal fibrosis in
diabetic mice. Stem Cell Res Ther. 9:1832018. View Article : Google Scholar : PubMed/NCBI
|
35
|
Wu JS, Li L, Wang SS, Pang X, Wu JB, Sheng
SR, Tang YJ, Tang YL, Zheng M and Liang XH: Autophagy is positively
associated with the accumulation of myeloid-derived suppressor
cells in 4-nitroquinoline-1-oxide-induced oral cancer. Oncol Rep.
40:3381–3391. 2018.PubMed/NCBI
|
36
|
Parker KH, Horn LA and Ostrand-Rosenberg
S: High-mobility group box protein 1 promotes the survival of
myeloid-derived suppressor cells by inducing autophagy. J Leukoc
Biol. 100:463–470. 2016. View Article : Google Scholar : PubMed/NCBI
|
37
|
Liu F, Li X, Lu C, Bai A, Bielawski J,
Bielawska A, Marshall B, Schoenlein PV, Lebedyeva IO and Liu K:
Ceramide activates lysosomal cathepsin B and cathepsin D to
attenuate autophagy and induces ER stress to suppress
myeloid-derived suppressor cells. Oncotarget. 7:83907–83925. 2016.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Condamine T, Kumar V, Ramachandran IR,
Youn JI, Celis E, Finnberg N, El-Deiry WS, Winograd R, Vonderheide
RH, English NR, et al: ER stress regulates myeloid-derived
suppressor cell fate through TRAIL-R-mediated apoptosis. J Clin
Invest. 124:2626–2639. 2014. View Article : Google Scholar : PubMed/NCBI
|
39
|
Li CF, Pan YK, Gao Y, Shi F, Wang YC and
Sun XQ: Autophagy protects HUVECs against ER stress-mediated
apoptosis under simulated microgravity. Apoptosis. 24:812–825.
2019. View Article : Google Scholar : PubMed/NCBI
|
40
|
Alissafi T, Hatzioannou A, Mintzas K,
Barouni RM, Banos A, Sormendi S, Polyzos A, Xilouri M, Wielockx B,
Gogas H and Verginis P: Autophagy orchestrates the regulatory
program of tumor-associated myeloid-derived suppressor cells. J
Clin Invest. 128:3840–3852. 2018. View Article : Google Scholar : PubMed/NCBI
|
41
|
Tamadaho RSE, Hoerauf A and Layland LE:
Immunomodulatory effects of myeloid-derived suppressor cells in
diseases: Role in cancer and infections. Immunobiology.
223:432–442. 2018. View Article : Google Scholar : PubMed/NCBI
|