1
|
Lankisch PG, Apte M and Banks PA: Acute
pancreatitis. Lancet. 386:85–96. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
van Dijk SM, Hallensleben NDL, van
Santvoort HC, Fockens P, van Goor H, Bruno MJ and Besselink MG;
Dutch Pancreatitis Study Group, : Acute pancreatitis: Recent
advances through randomised trials. Gut. 66:2024–2032. 2017.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Quinlan JD: Acute pancreatitis. Am Fam
Physician. 90:632–639. 2014.PubMed/NCBI
|
4
|
Sekimoto M, Takada T, Kawarada Y, Hirata
K, Mayumi T, Yoshida M, Hirota M, Kimura Y, Takeda K, Isaji S, et
al: JPN Guidelines for the management of acute pancreatitis:
Epidemiology, etiology, natural history, and outcome predictors in
acute pancreatitis. J Hepatobiliary Pancreat Surg. 13:2–6. 2006.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Lippi G, Valentino M and Cervellin G:
Laboratory diagnosis of acute pancreatitis: In search of the Holy
Grail. Crit Rev Clin Lab Sci. 49:18–31. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Machicado JD and Yadav D: Epidemiology of
recurrent acute and chronic pancreatitis: Similarities and
differences. Dig Dis Sci. 62:1683–1691. 2017. View Article : Google Scholar : PubMed/NCBI
|
7
|
Toskes PP: Hyperlipidemic pancreatitis.
Gastroenterol Clin North Am. 19:783–791. 1990.PubMed/NCBI
|
8
|
Wang R, Yan Z, Wu X, Ji K, Wang H and Zang
B: Rosiglitazone attenuates renal injury caused by hyperlipidemic
pancreatitis. Int J Clin Exp Pathol. 8:4332–4343. 2015.PubMed/NCBI
|
9
|
Mao EQ, Tang YQ and Zhang SD: Formalized
therapeutic guideline for hyperlipidemic severe acute pancreatitis.
World J Gastroenterol. 9:2622–2626. 2003. View Article : Google Scholar : PubMed/NCBI
|
10
|
Ramírez-Bueno A, Salazar-Ramírez C,
Cota-Delgado F, de la Torre-Prados MV and Valdivielso P:
Plasmapheresis as treatment for hyperlipidemic pancreatitis. Eur J
Intern Med. 25:160–163. 2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Yadav D and Pitchumoni CS: Issues in
hyperlipidemic pancreatitis. J Clin Gastroenterol. 36:54–62. 2003.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Grauvogel J, Daemmrich TD, Ryschich E,
Gebhard MM and Werner J: Chronic alcohol intake increases the
severity of pancreatitis induced by acute alcohol administration,
hyperlipidemia and and pancreatic duct obstruction in rats.
Pancreatology. 10:603–612. 2010. View Article : Google Scholar : PubMed/NCBI
|
13
|
Li X, Li X, Huang N, Liu R and Sun R: A
comprehensive review and perspectives on pharmacology and
toxicology of saikosaponins. Phytomedicine. 50:73–87. 2018.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Yang F, Dong X, Yin X, Wang W, You L and
Ni J: Radix Bupleuri: A review of traditional uses, botany,
phytochemistry, pharmacology, and toxicology. Biomed Res Int.
2017:75975962017.PubMed/NCBI
|
15
|
Yuan B, Yang R, Ma Y, Zhou S, Zhang X and
Liu Y: A systematic review of the active saikosaponins and extracts
isolated from Radix Bupleuri and their applications. Pharm Biol.
55:620–635. 2017. View Article : Google Scholar : PubMed/NCBI
|
16
|
Du ZA, Sun MN and Hu ZS: Saikosaponin a
ameliorates LPS-induced acute lung injury in mice. Inflammation.
41:193–198. 2018. View Article : Google Scholar : PubMed/NCBI
|
17
|
Lu CN, Yuan ZG, Zhang XL, Yan R, Zhao YQ,
Liao M and Chen JX: Saikosaponin a and its epimer saikosaponin d
exhibit anti-inflammatory activity by suppressing activation of
NF-κB signaling pathway. Int Immunopharmacol. 14:121–126. 2012.
View Article : Google Scholar : PubMed/NCBI
|
18
|
He D, Wang H, Xu L, Wang X, Peng K, Wang
L, Liu P and Qu P: Saikosaponin-a attenuates oxidized LDL uptake
and prompts cholesterol efflux in THP-1 cells. J Cardiovasc
Pharmacol. 67:510–518. 2016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Huang D, Zhao Q, Liu H, Guo Y and Xu H:
PPAR-α Agonist WY-14643 inhibits LPS-induced inflammation in
dynovial fibroblasts via NF-kB pathway. J Mol Neurosci. 59:544–553.
2016. View Article : Google Scholar : PubMed/NCBI
|
20
|
Griesbacher T, Pommer V, Schuligoi R,
Tiran B and Peskar BA: Anti-inflammatory actions of
perfluorooctanoic acid and peroxisome proliferator-activated
receptors (PPAR) alpha and gamma in experimental acute
pancreatitis. Int Immunopharmacol. 8:325–329. 2008. View Article : Google Scholar : PubMed/NCBI
|
21
|
Ding JL, Zhou ZG, Zhou XY, Zhou B, Wang L,
Wang R, Zhan L, Sun XF and Li Y: Attenuation of acute pancreatitis
by peroxisome proliferator-activated receptor-α in rats: The effect
on Toll-like receptor signaling pathways. Pancreas. 42:114–122.
2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
National Research Council (US) Committee
for the Update of the Guide for the Care and Use of Laboratory
Animals. Guide for the Care and Use of Laboratory Animals.
Publication No. 85-23(rev.). 327:963–965. 2011.
|
23
|
Cao Y, Bei W, Hu Y, Cao L, Huang L, Wang
L, Luo D, Chen Y, Yao X, He W, et al: Hypocholesterolemia of
Rhizoma Coptidis alkaloids is related to the bile acid by
up-regulated CYP7A1 in hyperlipidemic rats. Phytomedicine.
19:686–692. 2012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Wang X, Zhao X, Gu L, Lv C, He B, Liu Z,
Hou P, Bi K and Chen X: Simultaneous determination of five free and
total flavonoids in rat plasma by ultra HPLC-MS/MS and its
application to a comparative pharmacokinetic study in normal and
hyperlipidemic rats. J Chromatogr B Analyt Technol Biomed Life Sci.
3953-3954:1–10. 2014. View Article : Google Scholar
|
25
|
Niyaz B, Zhao KL, Liu LM, Chen C, Deng WH,
Zuo T, Shi Q and Wang WX: Rosiglitazone attenuates the severity of
hyperlipidemic severe acute pancreatitis in rats. Exp Ther Med.
6:989–994. 2013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Shi C, Hou C, Zhu X, Huang D, Peng Y, Tu
M, Li Q and Miao Y: SRT1720 ameliorates sodium taurocholate-induced
severe acute pancreatitis in rats by suppressing NF-κB signalling.
Biomed Pharmacother. 108:50–57. 2018. View Article : Google Scholar : PubMed/NCBI
|
27
|
Schmidt J, Rattner DW, Lewandrowski K,
Compton CC, Mandavilli U, Knoefel WT and Warshaw AL: A better model
of acute pancreatitis for evaluating therapy. Ann Surg. 215:44–56.
1992. View Article : Google Scholar : PubMed/NCBI
|
28
|
Badiei A, Chambers ST, Gaddam RR, Fraser R
and Bhatia M: Cystathionine-gamma-lyase gene silencing with siRNA
in monocytes/macrophages protects mice against acute pancreatitis.
Appl Microbiol Biotechnol. 100:337–346. 2016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Bazzoni F, Tamassia N, Rossato M and
Cassatella MA: Understanding the molecular mechanisms of the
multifaceted IL-10-mediated anti-inflammatory response: Lessons
from neutrophils. Eur J Immunol. 40:2360–2368. 2010. View Article : Google Scholar : PubMed/NCBI
|
30
|
Radojkovic M, Stojanovic M, Radojkovic D,
Jeremić L, Stanojević G, Damnjanovic Z and Stevanović G:
Hyperlipidemia in acute pancreatitis: Concomitant disorder or a
cause? Facta Universitatis. 12:57–60. 2014.
|
31
|
Nagayama D and Shirai K:
Hypertriglyceridemia-induced pancreatitis. Nihon Rinsho Jap J Clin
Med. 71:16022013.
|
32
|
Habtezion A: Inflammation in acute and
chronic pancreatitis. Curr Opin Gastroenterol. 31:395–399. 2015.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Samanta J, Singh S, Arora S, Muktesh G,
Aggarwal A, Dhaka N, Kant Sinha S, Gupta V, Sharma V and Kochhar R:
Cytokine profile in prediction of acute lung injury in patients
with acute pancreatitis. Pancreatology. 18:878–884. 2018.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Malleo G, Mazzon E, Siriwardena AK and
Cuzzocrea S: Role of tumor necrosis factor-alpha in acute
pancreatitis: From biological basis to clinical evidence. Shock.
28:130–140. 2007. View Article : Google Scholar : PubMed/NCBI
|
35
|
Pérez S, Pereda J, Sabater L and Sastre J:
Pancreatic ascites hemoglobin contributes to the systemic response
in acute pancreatitis. Free Radic Biol Med. 81:145–155. 2015.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Sun SC: The non-canonical NF-κB pathway in
immunity and inflammation. Nat Rev Immunol. 17:545–558. 2017.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Bao Z, Zhang P, Yao Y, Lu G, Tong Z, Yan
B, Tu L, Yang G and Zhou J: Deguelin Attenuates allergic airway
inflammation via inhibition of NF-κb pathway in mice. Int J Biol
Sci. 13:492–504. 2017. View Article : Google Scholar : PubMed/NCBI
|
38
|
Spiga R, Marini MA, Mancuso E, Di Fatta C,
Fuoco A, Perticone F, Andreozzi F, Mannino GC and Sesti G: Uric
acid is associated with inflammatory biomarkers and induces
inflammation via activating the NF-κB signaling pathway in HepG2
cells. Arterioscler Thromb Vasc Biol. 37:1241–1249. 2017.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Pan LF, Yu L, Wang LM, He JT, Sun JL, Wang
XB, Wang H, Bai ZH, Feng H and Pei HH: Augmenter of liver
regeneration (ALR) regulates acute pancreatitis via inhibiting
HMGB1/TLR4/NF-κB signaling pathway. Am J Transl Res. 10:402–410.
2018.PubMed/NCBI
|
40
|
Li G, Wu X, Yang L, He Y, Liu Y, Jin X and
Yuan H: TLR4-mediated NF-κB signaling pathway mediates
HMGB1-induced pancreatic injury in mice with severe acute
pancreatitis. Int J Mol Med. 37:99–107. 2016. View Article : Google Scholar : PubMed/NCBI
|
41
|
Shi Q, Liao KS, Zhao KL, Wang WX, Zuo T,
Deng WH, Chen C, Yu J, Guo WY, He XB, et al: Hydrogen-rich saline
attenuates acute renal injury in sodium Taurocholate-induced severe
acute pancreatitis by inhibiting ROS and NF-κB pathway. Mediators
Inflamm. 2015:6850432015. View Article : Google Scholar : PubMed/NCBI
|
42
|
Zhu J, Luo C, Wang P, He Q, Zhou J and
Peng H: Saikosaponin A mediates the inflammatory response by
inhibiting the MAPK and NF-kappaB pathways in LPS-stimulated RAW
264.7 cells. Exp Ther Med. 5:1345–1350. 2013. View Article : Google Scholar : PubMed/NCBI
|
43
|
Kim SO, Park JY, Jeon SY, Yang CH and Kim
MR: Saikosaponin a, an active compound of Radix Bupleuri,
attenuates inflammation in hypertrophied 3T3-L1 adipocytes via
ERK/NF-κB signaling pathways. Int J Mol Med. 35:1126–1132. 2015.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Ren JD, Ma J, Hou J, Xiao WJ, Jin WH, Wu J
and Fan KH: Hydrogen-rich saline inhibits NLRP3 inflammasome
activation and attenuates experimental acute pancreatitis in mice.
Mediators Inflamm. 2014:9308942014. View Article : Google Scholar : PubMed/NCBI
|
45
|
Fu Q, Zhai Z, Wang Y, Xu L, Jia P, Xia P,
Liu C, Zhang X, Qin T and Zhang H: NLRP3 deficiency alleviates
severe acute pancreatitis and pancreatitis-associated lung injury
in a mouse model. Biomed Res Int. 2018:12949512018. View Article : Google Scholar : PubMed/NCBI
|
46
|
Zhou X, Cheng H, Xu D, Yin Q, Cheng L,
Wang L, Song S and Zhang M: Attenuation of neuropathic pain by
saikosaponin a in a rat model of chronic constriction injury.
Neurochem Res. 39:2136–2142. 2014. View Article : Google Scholar : PubMed/NCBI
|
47
|
Laganà AS, Vitale SG, Nigro A, Sofo V,
Salmeri FM, Rossetti P, Rapisarda AM, La Vignera S, Condorelli RA,
Rizzo G and Buscema M: Pleiotropic actions of peroxisome
proliferator-activated receptors (PPARs) in Dysregulated metabolic
homeostasis, inflammation and cancer: Current evidence and future
perspectives. Int J Mol Sci. 17(pii): E9992016. View Article : Google Scholar : PubMed/NCBI
|
48
|
Huang W, Szatmary P, Wan M, Bharucha S,
Awais M, Tang W, Criddle DN, Xia Q and Sutton R: Translational
insights into peroxisome Proliferator-activated receptors in
experimental acute pancreatitis. Pancreas. 45:167–178. 2016.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Jakkampudi A, Jangala R, Reddy BR, Mitnala
S, Nageshwar Reddy D and Talukdar R: NF-κB in acute pancreatitis:
Mechanisms and therapeutic potential. Pancreatology. 16:477–488.
2016. View Article : Google Scholar : PubMed/NCBI
|
50
|
Park MH, Park JY, Lee HJ, Kim DH, Chung
KW, Park D, Jeong HO, Kim HR, Park CH, Kim SR, et al: The novel
PPAR α/γ dual agonist MHY 966 modulates UVB-induced skin
inflammation by inhibiting NF-κB activity. PLoS One. 8:e768202013.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Lin MH, Chen MC, Chen TH, Chang HY and
Chou TC: Magnolol ameliorates lipopolysaccharide-induced acute lung
injury in rats through PPAR-γ-dependent inhibition of NF-kB
activation. Int Immunopharmacol. 28:270–278. 2015. View Article : Google Scholar : PubMed/NCBI
|
52
|
Awla D, Abdulla A, Regnér S and Thorlacius
H: TLR4 but not TLR2 regulates inflammation and tissue damage in
acute pancreatitis induced by retrograde infusion of taurocholate.
Inflamm Res. 60:1093–1098. 2011. View Article : Google Scholar : PubMed/NCBI
|
53
|
Jeon Y, Jung Y, Kim MC, Kwon HC, Kang KS,
Kim YK and Kim SN: Sargahydroquinoic acid inhibits TNFα-induced
AP-1 and NF-κB signaling in HaCaT cells through PPARα activation.
Biochem Biophys Res Commun. 8(450): 1553–1559. 2014. View Article : Google Scholar
|
54
|
Luo G, Li F, Li X, Wang ZG and Zhang B:
TNF-α and RANKL promote osteoclastogenesis by upregulating RANK via
the NF-κB pathway. Mol Med Rep. 17:6605–6611. 2018.PubMed/NCBI
|
55
|
Turkyilmaz S, Cekic AB, Usta A, Alhan E,
Kural BV, Ercin C and Sağlam K: Ethyl pyruvate treatment
ameliorates pancreatic damage: Evidence from a rat model of acute
necrotizing pancreatitis. Arch Med Sci. 15:232–239. 2019.
View Article : Google Scholar : PubMed/NCBI
|
56
|
Turkyilmaz S, Usta A, Cekic AB, Alhan E,
Kural BV and Ercin C: N-acetylcysteine amid reduces pancreatic
damage in a rat model of acute necrotizing pancreatitis. J Surg
Res. 203:383–389. 2016. View Article : Google Scholar : PubMed/NCBI
|
57
|
Hughes CB, el-Din AB, Kotb M, Gaber LW and
Gaber AO: Calcium channel blockade inhibits release of TNF alpha
and improves survival in a rat model of acute pancreatitis.
Pancreas. 13:22–28. 1996. View Article : Google Scholar : PubMed/NCBI
|
58
|
Chen X, Valente JF and Alexander JW: The
effect of Sennosides on bacterial translocation and survival in a
model of acute hemorrhagic pancreatitis. Pancreas. 18:39–46. 1999.
View Article : Google Scholar : PubMed/NCBI
|