1
|
López D, Vlamakis H and Kolter R:
Biofilms. Cold Spring Harb Perspect Biol. 2:a0003982010. View Article : Google Scholar : PubMed/NCBI
|
2
|
Muhsin J, Ufaq T, Tahir H and Saadia A:
Bacterial biofilm: its composition, formation and role in human
infections. J Microbiol Biotechnol. 4:1–14. 2015.
|
3
|
Bassler BL: Small talk. Cell-to-cell
communication in bacteria. Cell. 109:421–424. 2002. View Article : Google Scholar : PubMed/NCBI
|
4
|
Nadell CD, Xavier JB, Levin SA and Foster
KR: The evolution of quorum sensing in bacterial biofilms. PLoS
Biol. 6:e142008. View Article : Google Scholar : PubMed/NCBI
|
5
|
Rahman K and Lowe GM: Garlic and
cardiovascular disease: A critical review. J Nutr. 136:736S–740S.
2006. View Article : Google Scholar : PubMed/NCBI
|
6
|
Roy N, Davis S, Narayanankutty A, Nazeem
P, Babu T, Abida P, Valsala P and Raghavamenon AC: Garlic
phytocompounds possess anticancer activity by specifically
targeting breast cancer biomarkers-an in silico study. Asian Pac J
Cancer Prev. 17:2883–2888. 2016.PubMed/NCBI
|
7
|
Fuchs AL, Weaver AJ Jr, Tripet BP, Ammons
MCB, Teintze M and Copié V: Characterization of the antibacterial
activity of Bald's eyesalve against drug resistant
Staphylococcus aureus and Pseudomonas aeruginosa.
PLoS One. 13:e02081082018. View Article : Google Scholar : PubMed/NCBI
|
8
|
Zwergal A: Beitrag zur Kenntnis der
Inhaltsstoffe des Knoblauchs, Allium sativum L. Chem Abstr.
47:32241952.(In German).
|
9
|
Lawson LD and Wang ZJ: Pre-hepatic fate of
the organosulfur compounds derived from garlic (Allim
sativum). Planta Med. 59((S1)): A688–A689. 1993. View Article : Google Scholar
|
10
|
Freeman F and Kodera Y: Garlic chemistry:
Stability of S-(2-propyl) 2-propen-1-sulfinothioate (allicin) in
blood, solvents, and stimulated physiological fluids. J Agric Food
Chem. 43:2332–2338. 1995. View Article : Google Scholar
|
11
|
Li WR, Ma YK, Shi QS, Xie XB, Sun TL, Peng
H and Huang XM: Diallyl disulfide from garlic oil inhibits
Pseudomonas aeruginosa virulence factors by inactivating key
quorum sensing genes. Appl Microbiol Biotechnol. 102:7555–7564.
2018. View Article : Google Scholar : PubMed/NCBI
|
12
|
Tsao S and Yin M: In vitro activity
of garlic oil and four diallyl sulphides against
antibiotic-resistant Pseudomonas aeruginosa and Klebsiella
pneumoniae. J Antimicrob Chemother. 47:665–670. 2001. View Article : Google Scholar : PubMed/NCBI
|
13
|
Rasmussen TB, Bjarnsholt T, Skindersoe ME,
Hentzer M, Kristoffersen P, Köte M, Nielsen J, Eberl L and Givskov
M: Screening for quorum-sensing inhibitors (QSI) by use of a novel
genetic system, the QSI selector. J Bacteriol. 187:1799–1814. 2005.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Gowrishankar S, Kamaladevi A, Balamurugan
K and Pandian SK: In vitro and in vivo biofilm
characterization of methicillin-resistant staphylococcus
aureus from patients associated with pharyngitis infection.
BioMed Res Int. 2016:12891572016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Corrigan RM, Rigby D, Handley P and Foster
TJ: The role of Staphylococcus aureus surface protein SasG
in adherence and biofilm formation. Microbiology. 153:2435–2446.
2007. View Article : Google Scholar : PubMed/NCBI
|
16
|
Alabdullatif M and Ramirez-Arcos S:
Biofilm-associated accumulation-associated protein (Aap): A
contributing factor to the predominant growth of Staphylococcus
epidermidis in platelet concentrates. Vox Sang. 114:28–37.
2019. View Article : Google Scholar : PubMed/NCBI
|
17
|
Slachmuylders L, Van Acker H, Brackman G,
Sass A, Van Nieuwerburgh F and Coenye T: Elucidation of the
mechanism behind the potentiating activity of baicalin against
Burkholderia cenocepacia biofilms. https://doi.org/10.1371/journal.pone.0190533
View Article : Google Scholar
|
18
|
Yu C, Li X, Zhang N, Wen D, Liu C and Li
Q: Inhibition of biofilm formation by D-tyrosine: Effect of
bacterial type and D-tyrosine concentration. Water Res. 92:173–179.
2016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Kariu T, Nakao R, Ikeda T, Nakashima K,
Potempa J and Imamura T: Inhibition of gingipains and Porphyromonas
gingivalis growth and biofilm formation by prenyl flavonoids. J
Periodontal Res. 52:89–96. 2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Hasibul K, Nakayama-Imaohji H, Hashimoto
M, Yamasaki H, Ogawa T, Waki J, Tada A, Yoneda S, Tokuda M, Miyake
M and Kuwahara T: D-Tagatose inhibits the growth and biofilm
formation of Streptococcus mutans. Mol Med Rep. 17:843–851.
2018.PubMed/NCBI
|
21
|
Block E: The chemistry of garlic and
onions. Sci Am. 252:114–119. 1985. View Article : Google Scholar : PubMed/NCBI
|
22
|
Cavallito CJ and Bailey JH: Allicin,
antibacterial principle of Allium sativum. I. Islation,
physical properties, and antibacterial action. J Am Chem Soc.
66:1950–1951. 1944. View Article : Google Scholar
|
23
|
Wu X, Santos RR and Fink-Gremmels J:
Analyzing the antibacterial effects of food ingredients: Model
experiments with allicin and garlic extracts on biofilm formation
and viability of Staphylococcus epidermidis. Food Sci Nutr.
3:158–168. 2015. View
Article : Google Scholar : PubMed/NCBI
|
24
|
Wallock-Richards D, Doherty CJ, Doherty L,
Clarke DJ, Place M, Govan JR and Campopiano DJ: Garlic revisited:
Antimicrobial activity of allicin-containing garlic extracts
against Burkholderia cepacia complex. PLoS One.
9:e1127262014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Feldberg RS, Chang SC, Kotik AN, Nadler M,
Neuwirth Z, Sundstrom DC and Thompson NH: In vitro mechanism of
inhibition of bacterial cell growth by allicin. Antimicrob Agents
Chemother. 32:1763–1768. 1988. View Article : Google Scholar : PubMed/NCBI
|
26
|
Loi VV, Huyen NTT, Busche T, Tung QN,
Gruhlke MCH, Kalinowski J, Bernhardt J, Slusarenko AJ and Antelmann
H: Staphylococcus aureus responds to allicin by global
S-thioallylation-Role of the Brx/BSH/YpdA pathway and the
disulfide reductase MerA to overcome allicin stress. Free Radic
Biol Med. 139:55–69. 2019. View Article : Google Scholar : PubMed/NCBI
|
27
|
Weber ND, Andersen DO, North JA, Murray
BK, Lawson LD and Hughes BG: In vitro virucidal effects of
Allium sativum (garlic) extract and compounds. Planta Med.
58:417–423. 1992. View Article : Google Scholar : PubMed/NCBI
|
28
|
Getti GTM and Poole PL: Allicin causes
fragmentation of the peptidoglycan coat in Staphylococcus
aureus by effecting synthesis and aiding hydrolysis: A
determination by MALDI-TOF mass spectrometry on whole cells. J Med
Microbiol. 68:667–677. 2019. View Article : Google Scholar : PubMed/NCBI
|
29
|
Müller A, Eller J, Albrecht F, Prochnow P,
Kuhlmann K, Bandow JE, Slusarenko AJ and Leichert LI: Allicin
induces thiol stress in bacteria through S-alylmercapto
modification of protein cysteines. J Biol Chem. 291:11477–90. 2016.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Reiter J, Levina N, van der Linden M,
Gruhlke M, Martin C and Slusarenko AJ: Diallylthiosulfinate
(allicin), a volatile antimicrobial from garlic (Allium
sativum), kills human lung pathogenic bacteria, including MDR
strains, as a vapor. Molecules. 22:E17112017. View Article : Google Scholar : PubMed/NCBI
|
31
|
Sharifi-Rad J, Hoseini Alfatemi S, Sharifi
Rad M and Iriti M: Antimicrobial synergic effect of allicin and
silver nanoparticles on skin infection caused by
methicillin-resistant staphylococcus aureus spp. Ann Med
Health Sci Res. 4:863–8. 2014. View Article : Google Scholar : PubMed/NCBI
|
32
|
Amagase H: Clarifying the real bioactive
constituents of garlic. J Nutr. 136 (Suppl):716S–725S. 2006.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Block E: Garlic and Other Alliums: The
Lore and the Science. The Royal Society of Chemistry; Cambridge,
UK: 2010
|
34
|
Keophiphath M, Priem F, Jacquemond-Collet
I, Clément K and Lacasa D: 1,2-Vinyldithiin from garlic inhibits
differentiation and inflammation of human preadipocytes. J Nutr.
139:2055–2060. 2009. View Article : Google Scholar : PubMed/NCBI
|
35
|
Hermes Robert E: Antithrombogenic and
antibiotic composition and methods of preparation thereof. US
Patent 4917921. Filed April 20, 1988; issued January 25, 1990.
|
36
|
Yoshida H, Iwata N, Katsuzaki H, Naganawa
R, Ishikawa K, Fukuda H, Fujino T and Suzuki A: Antimicrobial
activity of a compound isolated from an oil-macerated garlic
extract. Biosci Biotechnol Biochem. 62:1014–1017. 1998. View Article : Google Scholar : PubMed/NCBI
|
37
|
Ohta R, Yamada N, Kaneko H, Ishikawa K,
Fukuda H, Fujino T and Suzuki A: In vitro inhibition of the growth
of Helicobacter pylori by oil-macerated garlic constituents.
Antimicrob Agents Chemother. 43:1811–1812. 1999. View Article : Google Scholar : PubMed/NCBI
|
38
|
Maluf ML, Takahachi G, Svidzinski TI,
Xander P, Apitz-Castro R, Bersani-Amado CA and Cuman RK: Antifungal
activity of ajoene on experimental murine paracoccidioidomycosis.
Rev Iberoam Micol. 25:163–166. 2008. View Article : Google Scholar : PubMed/NCBI
|
39
|
Yoshida S, Kasuga S, Hayashi N,
Ushiroguchi T, Matsuura H and Nakagawa S: Antifungal activity of
ajoene derived from garlic. Appl Environ Microbiol. 53:615–617.
1987. View Article : Google Scholar : PubMed/NCBI
|
40
|
Satyal P, Craft JD, Dosoky NS and Setzer
WN: The chemical compositions of the volatile oils of garlic
(allium sativum) and wild garlic (Allium vineale).
Foods. 6:e632017. View Article : Google Scholar : PubMed/NCBI
|
41
|
Koch HP and Lawson LD: The Science and
Therapeutic Application of Allium Sativum L and Related
Species. 2nd. Williams and Wilkins; Baltimore, MD, USA: 1996
|
42
|
Matsuura H, Ushiroguchi T, Itakura Y,
Hayashi N and Fuwa T: A furostanol glycoside from garlic, bulbs of
Allium sativum L. Chem Pharm Bull (Tokyo). 36:3659–3663.
1988. View Article : Google Scholar
|
43
|
Matsuura H, Ushiroguchi T, Itakura Y and
Fuwa T: Further studies on steroidal glycosides from bulbs, root
and leaves of Allium sativum L. Chem Pharm Bull (Tokyo).
37:2741–2743. 1989. View Article : Google Scholar
|
44
|
Høiby N: A short history of microbial
biofilms and biofilm infections. APMIS. 125:272–275. 2017.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Kodera Y, Matsuura H, Yoshida S, Sumida T,
Itakura Y, Fuwa T and Nishino H: Allixin, a stress compound from
garlic. Chem Pharm Bull (Tokyo). 37:1656–1658. 1989. View Article : Google Scholar
|
46
|
Novick RP: Autoinduction and signal
transduction in the regulation of staphylococcal virulence. Mol
Microbiol. 48:1429–1449. 2003. View Article : Google Scholar : PubMed/NCBI
|
47
|
Persson T, Hansen TH, Rasmussen TB,
Skindersø ME, Givskov M and Nielsen J: Rational design and
synthesis of new quorum-sensing inhibitors derived from acylated
homoserine lactones and natural products from garlic. Org Biomol
Chem. 3:253–262. 2005. View Article : Google Scholar : PubMed/NCBI
|
48
|
Lihua L, Jianhuit W, Jialini Y, Yayin L
and Guanxin L: Effects of allicin on the formation of
Pseudomonas aeruginosa biofinm and the production of
quorum-sensing controlled virulence factors. Pol J Microbiol.
62:243–251. 2013. View Article : Google Scholar : PubMed/NCBI
|
49
|
Ranjbar-Omid M, Arzanlou M, Amani M,
Shokri Al-Hashem SK, Amir Mozafari N and Peeri Doghaheh H: Allicin
from garlic inhibits the biofilm formation and urease activity of
Proteus mirabilis in vitro. FEMS Microbiol Lett.
362:fnv0492015. View Article : Google Scholar : PubMed/NCBI
|
50
|
Xu Z, Zhang H, Yu H, Dai Q, Xiong J, Sheng
H, Qiu J, Jiang L, Peng J, He X, et al: Allicin inhibits
Pseudomonas aeruginosa virulence by suppressing the
rhl and pqs quorum-sensing systems. Can J Microbiol.
65:563–574. 2019. View Article : Google Scholar : PubMed/NCBI
|
51
|
Jakobsen TH, van Gennip M, Phipps RK,
Shanmugham MS, Christensen LD, Alhede M, Skindersoe ME, Rasmussen
TB, Friedrich K, Uthe F, et al: Ajoene, a sulfur-rich molecule from
garlic, inhibits genes controlled by quorum sensing. Antimicrob
Agents Chemother. 56:2314–2325. 2012. View Article : Google Scholar : PubMed/NCBI
|
52
|
Jakobsen TH, Warming AN, Vejborg RM,
Moscoso JA, Stegger M, Lorenzen F, Rybtke M, Andersen JB, Petersen
R, Andersen PS, Nielsen TE, Tolker-Nielsen T, Filloux A, Ingmer H
and Givskov M: A broad range quorum sensing inhibitor working
through sRNA inhibition. Sci Rep. 7:98572017. View Article : Google Scholar : PubMed/NCBI
|
53
|
Vasquez JK, Tal-Gan Y, Cornilescu G, Tyler
KA and Blackwell HE: Simplified AIP-II peptidomimetics are potent
inhibitors of Staphylococcus aureus AgrC quorum sensing
receptors. Chembiochem. 18:413–423. 2017. View Article : Google Scholar : PubMed/NCBI
|