Function and mechanisms of microRNA‑20a in colorectal cancer (Review)
- Authors:
- Zheng Xiao
- Shi Chen
- Shujun Feng
- Yukun Li
- Juan Zou
- Hui Ling
- Ying Zeng
- Xi Zeng
-
Affiliations: Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, P.R. China - Published online on: January 8, 2020 https://doi.org/10.3892/etm.2020.8432
- Pages: 1605-1616
-
Copyright: © Xiao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI | |
Siegel R, Desantis C and Jemal A: Colorectal Cancer Statistics, 2014. CA Cancer J Clin. 64:104–117. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lan YT, Chang SC, Yang SH, Lin CC, Wang HS, Jiang JK, Chen WS, Lin TC, Chiou SH and Lin JK: Comparison of clinicopathological characteristics and prognosis between early and late recurrence after curative surgery for colorectal cancer. Am J Surg. 207:922–930. 2014. View Article : Google Scholar : PubMed/NCBI | |
Guraya SY: Pattern, stage, and time of recurrent colorectal cancer after curative surgery. Clin Colorectal Cancer. 18:e223–e228. 2019. View Article : Google Scholar : PubMed/NCBI | |
Makishima H, Yasuda S, Isozaki Y, Kasuya G, Okada N, Miyazaki M, Mohamad O, Matsufuji N, Yamada S, Tsuji H, et al Liver Cancer Working Group, : Single fraction carbon ion radiotherapy for colorectal cancer liver metastasis: A dose escalation study. Cancer Sci. 110:303–309. 2019.PubMed/NCBI | |
Chen H, Xu Z and Liu D: Small non-coding RNA and colorectal cancer. J Cell Mol Med. 23:3050–3057. 2019. View Article : Google Scholar : PubMed/NCBI | |
Krol J, Loedige I and Filipowicz W: The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 11:597–610. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bartel DP: MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 116:281–297. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kim VN, Han J and Siomi MC: Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol. 10:126–139. 2009. View Article : Google Scholar : PubMed/NCBI | |
Xi XP, Zhuang J, Teng MJ, Xia LJ, Yang MY, Liu QG and Chen JB: MicroRNA-17 induces epithelial-mesenchymal transition consistent with the cancer stem cell phenotype by regulating CYP7B1 expression in colon cancer. Int J Mol Med. 38:499–506. 2016. View Article : Google Scholar : PubMed/NCBI | |
Fang L, Li H, Wang L, Hu J, Jin T, Wang J and Yang BB: MicroRNA-17-5p promotes chemotherapeutic drug resistance and tumour metastasis of colorectal cancer by repressing PTEN expression. Oncotarget. 5:2974–2987. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wu CW, Dong YJ, Liang QY, He XQ, Ng SS, Chan FK, Sung JJ and Yu J: MicroRNA-18a attenuates DNA damage repair through suppressing the expression of ataxia telangiectasia mutated in colorectal cancer. PLoS One. 8:e570362013. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Liu R, Yang F, Cheng R, Chen X, Cui S, Gu Y, Sun W, You C, Liu Z, et al: miR-19a promotes colorectal cancer proliferation and migration by targeting TIA1. Mol Cancer. 16:532017. View Article : Google Scholar : PubMed/NCBI | |
Huang L, Cai JL, Huang PZ, Kang L, Huang MJ, Wang L and Wang JP: miR19b-3p promotes the growth and metastasis of colorectal cancer via directly targeting ITGB8. Am J Cancer Res. 7:1996–2008. 2017.PubMed/NCBI | |
Huang G, Chen X, Cai Y, Wang X and Xing C: miR-20a-directed regulation of BID is associated with the TRAIL sensitivity in colorectal cancer. Oncol Rep. 37:571–578. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xu T, Jing C, Shi Y, Miao R, Peng L, Kong S, Ma Y and Li L: microRNA-20a enhances the epithelial-to-mesenchymal transition of colorectal cancer cells by modulating matrix metalloproteinases. Exp Ther Med. 10:683–688. 2015. View Article : Google Scholar : PubMed/NCBI | |
Dalmasso G, Cougnoux A, Delmas J, Darfeuille-Michaud A and Bonnet R: The bacterial genotoxin colibactin promotes colon tumor growth by modifying the tumor microenvironment. Gut Microbes. 5:675–680. 2014. View Article : Google Scholar : PubMed/NCBI | |
Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S and Allgayer H: MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene. 27:2128–2136. 2008. View Article : Google Scholar : PubMed/NCBI | |
Jin H, Shi X, Zhao Y, Peng M, Kong Y, Qin D and Lv X: MicroRNA-30a mediates cell migration and invasion by targeting metadherin in colorectal cancer. Technol Cancer Res Treat. 17:15330338187581082018. View Article : Google Scholar : PubMed/NCBI | |
Sun D, Yu F, Ma Y, Zhao R, Chen X, Zhu J, Zhang CY, Chen J and Zhang J: MicroRNA-31 activates the RAS pathway and functions as an oncogenic microRNA in human colorectal cancer by repressing RAS p21 GTPase activating protein 1 (RASA1). J Biol Chem. 288:9508–9518. 2013. View Article : Google Scholar : PubMed/NCBI | |
Akao Y, Noguchi S, Iio A, Kojima K, Takagi T and Naoe T: Dysregulation of microRNA-34a expression causes drug-resistance to 5-FU in human colon cancer DLD-1 cells. Cancer Lett. 300:197–204. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhang G, Zhou H, Xiao H, Liu Z, Tian H and Zhou T: MicroRNA-92a functions as an oncogene in colorectal cancer by targeting PTEN. Dig Dis Sci. 59:98–107. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cappuzzo F, Sacconi A, Landi L, Ludovini V, Biagioni F, D'Incecco A, Capodanno A, Salvini J, Corgna E, Cupini S, et al: MicroRNA signature in metastatic colorectal cancer patients treated with anti-EGFR monoclonal antibodies. Clin Colorectal Cancer. 13:37–45.e4. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lian B, Yang D, Liu Y, Shi G, Li J, Yan X, Jin K, Liu X, Zhao J, Shang W, et al: miR-128 Targets the SIRT1/ROS/DR5 Pathway to Sensitize Colorectal Cancer to TRAIL-Induced Apoptosis. Cell Physiol Biochem. 49:2151–2162. 2018. View Article : Google Scholar : PubMed/NCBI | |
Salem SM, Hamed AR, Fayez AG and Nour Eldeen G: Non-target genes regulate miRNAs-mediated migration steering of colorectal carcinoma. Pathol Oncol Res. 25:559–566. 2019. View Article : Google Scholar : PubMed/NCBI | |
Xu K, Liu X, Mao X, Xue L, Wang R, Chen L and Chu X: MicroRNA-149 suppresses colorectal cancer cell migration and invasion by directly targeting forkhead box transcription factor FOXM1. Cell Physiol Biochem. 35:499–515. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li LX, Lam IH, Liang FF, Yi SP, Ye LF, Wang JT, Guo WW and Xu M: MiR-198 affects the proliferation and apoptosis of colorectal cancer through regulation of ADAM28/JAK-STAT signaling pathway. Eur Rev Med Pharmacol Sci. 23:1487–1493. 2019.PubMed/NCBI | |
Zhang Z, Zhong X, Xiao Y and Chen C: MicroRNA-296 inhibits colorectal cancer cell growth and enhances apoptosis by targeting ARRB1-mediated AKT activation. Oncol Rep. 41:619–629. 2019.PubMed/NCBI | |
Yan F, Tu Z, Duan L, Wang D and Lin F: MicroRNA-383 suppresses cell proliferation and invasion in colorectal cancer by directly targeting paired box 6. Mol Med Rep. 17:6893–6901. 2018.PubMed/NCBI | |
Wang W, He Y, Rui J and Xu MQ: miR-410 acts as an oncogene in colorectal cancer cells by targeting dickkopf-related protein 1 via the Wnt/β-catenin signaling pathway. Oncol Lett. 17:807–814. 2019.PubMed/NCBI | |
Li T, Jian X, He H, Lai Q, Li X, Deng D, Liu T, Zhu J, Jiao H, Ye Y, et al: MiR-452 promotes an aggressive colorectal cancer phenotype by regulating a Wnt/β-catenin positive feedback loop. J Exp Clin Cancer Res. 37:2382018. View Article : Google Scholar : PubMed/NCBI | |
Li KP, Fang YP, Liao JQ, Duan JD, Feng LG, Luo XZ and Liang ZJ: Upregulation of miR-598 promotes cell proliferation and cell cycle progression in human colorectal carcinoma by suppressing INPP5E expression. Mol Med Rep. 17:2991–2997. 2018.PubMed/NCBI | |
Wang L, Xu M, Lu P and Zhou F: microRNA-769 is downregulated in colorectal cancer and inhibits cancer progression by directly targeting cyclin-dependent kinase 1. OncoTargets Ther. 11:9013–9025. 2018. View Article : Google Scholar | |
Yang D, Li R, Xia J, Li W and Zhou H: miR-3666 suppresses cellular proliferation and invasion in colorectal cancer by targeting SATB2. Mol Med Rep. 18:4847–4854. 2018.PubMed/NCBI | |
Liu H, Li D, Fang H and Ning J: Species-specific function of microRNA-7702 in human colorectal cancer cells via targeting TADA1. Am J Transl Res. 10:2579–2589. 2018.PubMed/NCBI | |
Mogilyansky E and Rigoutsos I: The miR-17/92 cluster: A comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death Differ. 20:1603–1614. 2013. View Article : Google Scholar : PubMed/NCBI | |
Huang L, Wang X, Wen C, Yang X, Song M, Chen J, Wang C, Zhang B, Wang L, Iwamoto A, et al: Hsa-miR-19a is associated with lymph metastasis and mediates the TNF-α induced epithelial-to-mesenchymal transition in colorectal cancer. Sci Rep. 5:133502015. View Article : Google Scholar : PubMed/NCBI | |
Hao S, Huo S, Du Z, Yang Q, Ren M, Liu S, Liu T and Zhang G: MicroRNA-related transcription factor regulatory networks in human colorectal cancer. Medicine (Baltimore). 98:e151582019. View Article : Google Scholar : PubMed/NCBI | |
Shirafkan N, Mansoori B, Mohammadi A, Shomali N, Ghasbi M and Baradaran B: MicroRNAs as novel biomarkers for colorectal cancer: New outlooks. Biomed Pharmacother. 97:1319–1330. 2018. View Article : Google Scholar : PubMed/NCBI | |
Guo Y, Bao Y and Yang W: Regulatory miRNAs in colorectal carcinogenesis and metastasis. Int J Mol Sci. 18:182017. View Article : Google Scholar | |
Motoyama K, Inoue H, Takatsuno Y, Tanaka F, Mimori K, Uetake H, Sugihara K and Mori M: Over- and under-expressed microRNAs in human colorectal cancer. Int J Oncol. 34:1069–1075. 2009.PubMed/NCBI | |
Yau TO, Wu CW, Tang CM, Chen Y, Fang J, Dong Y, Liang Q, Ng SS, Chan FK, Sung JJ, et al: MicroRNA-20a in human faeces as a non-invasive biomarker for colorectal cancer. Oncotarget. 7:1559–1568. 2016. View Article : Google Scholar : PubMed/NCBI | |
Moradi-Marjaneh R, Hassanian SM, Mehramiz M, Rezayi M, Ferns GA, Khazaei M and Avan A: Reactive oxygen species in colorectal cancer: The therapeutic impact and its potential roles in tumor progression via perturbation of cellular and physiological dysregulated pathways. J Cell Physiol. 234:10072–10079. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zeng X, Xiang J, Wu M, Xiong W, Tang H, Deng M, Li X, Liao Q, Su B, Luo Z, et al: Circulating miR-17, miR-20a, miR-29c, and miR-223 combined as non-invasive biomarkers in nasopharyngeal carcinoma. PLoS One. 7:e463672012. View Article : Google Scholar : PubMed/NCBI | |
Yang R, Fu Y, Zeng Y, Xiang M, Yin Y, Li L, Xu H, Zhong J and Zeng X: Serum miR-20a is a promising biomarker for gastric cancer. Biomed Rep. 6:429–434. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhu SY, Wu QY, Zhang CX, Wang Q, Ling J, Huang XT, Sun X, Yuan M, Wu D and Yin HF: miR-20a inhibits the killing effect of natural killer cells to cervical cancer cells by downregulating RUNX1. Biochem Biophys Res Commun. 505:309–316. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li S, Qiang Q, Shan H, Shi M, Gan G, Ma F and Chen B: miR-20a and miR-20b negatively regulate autophagy by targeting RB1CC1/FIP200 in breast cancer cells. Life Sci. 147:143–152. 2016. View Article : Google Scholar : PubMed/NCBI | |
Fan MQ, Huang CB, Gu Y, Xiao Y, Sheng JX and Zhong L: Decrease expression of microRNA-20a promotes cancer cell proliferation and predicts poor survival of hepatocellular carcinoma. J Exp Clin Cancer Res. 32:212013. View Article : Google Scholar : PubMed/NCBI | |
Liao C, Chen W and Wang J: MicroRNA-20a regulates glioma cell proliferation, invasion, and apoptosis by targeting CUGBP elav-like family member 2. World Neurosurg. 121:e519–e527. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu X: Up-regulation of miR-20a by HPV16 E6 exerts growth-promoting effects by targeting PDCD6 in cervical carcinoma cells. Biomed Pharmacother. 102:996–1002. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhou L, Li X, Zhou F, Jin Z, Chen D, Wang P, Zhang S, Zhuge Y, Shang Y and Zou X: Downregulation of leucine-rich repeats and immunoglobulin-like domains 1 by microRNA-20a modulates gastric cancer multidrug resistance. Cancer Sci. 109:1044–1054. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wei L and Ran F: MicroRNA-20a promotes proliferation and invasion by directly targeting early growth response 2 in non-small cell lung carcinoma. Oncol Lett. 15:271–277. 2018.PubMed/NCBI | |
Yu Y, Zhang J, Jin Y, Yang Y, Shi J, Chen F, Han S, Chu P, Lu J, Wang H, et al: MiR-20a-5p suppresses tumor proliferation by targeting autophagy-related gene 7 in neuroblastoma. Cancer Cell Int. 18:52018. View Article : Google Scholar : PubMed/NCBI | |
Zhao F, Pu Y, Qian L, Zang C, Tao Z and Gao J: MiR-20a-5p promotes radio-resistance by targeting NPAS2 in nasopharyngeal cancer cells. Oncotarget. 8:105873–105881. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xiong Y, Sun F, Dong P, Watari H, Yue J, Yu MF, Lan CY, Wang Y and Ma ZB: iASPP induces EMT and cisplatin resistance in human cervical cancer through miR-20a-FBXL5/BTG3 signaling. J Exp Clin Cancer Res. 36:482017. View Article : Google Scholar : PubMed/NCBI | |
Huang D, Bian G, Pan Y, Han X, Sun Y, Wang Y, Shen G, Cheng M, Fang X and Hu S: MiR-20a-5p promotes radio-resistance by targeting Rab27B in nasopharyngeal cancer cells. Cancer Cell Int. 17:322017. View Article : Google Scholar : PubMed/NCBI | |
Zhu M, Zhou X, Du Y, Huang Z, Zhu J, Xu J, Cheng G, Shu Y, Liu P, Zhu W, et al: miR-20a induces cisplatin resistance of a human gastric cancer cell line via targeting CYLD. Mol Med Rep. 14:1742–1750. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dhar S, Kumar A, Rimando AM, Zhang X and Levenson AS: Resveratrol and pterostilbene epigenetically restore PTEN expression by targeting oncomiRs of the miR-17 family in prostate cancer. Oncotarget. 6:27214–27226. 2015. View Article : Google Scholar : PubMed/NCBI | |
Du Y, Zhu M, Zhou X, Huang Z, Zhu J, Xu J, Cheng G, Shu Y, Liu P, Zhu W, et al: miR-20a enhances cisplatin resistance of human gastric cancer cell line by targeting NFKBIB. Tumour Biol. 37:1261–1269. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wei J, Qi X, Zhan Q, Zhou D, Yan Q, Wang Y, Mo L, Wan Y, Xie D, Xie J, et al: miR-20a mediates temozolomide-resistance in glioblastoma cells via negatively regulating LRIG1 expression. Biomed Pharmacother. 71:112–118. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhao S, Yao D, Chen J, Ding N and Ren F: MiR-20a promotes cervical cancer proliferation and metastasis in vitro and in vivo. PLoS One. 10:e01209052015. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Han T, Wei G and Wang Y: Inhibition of microRNA-17/20a suppresses cell proliferation in gastric cancer by modulating UBE2C expression. Oncol Rep. 33:2529–2536. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Kong Y, Xu X, Xing H, Zhang Y, Han F, Li W, Yang Q, Zeng J, Jia J, et al: F-box protein FBXO31 is down-regulated in gastric cancer and negatively regulated by miR-17 and miR-20a. Oncotarget. 5:6178–6190. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhou J, Liu R, Luo C, Zhou X, Xia K, Chen X, Zhou M, Zou Q, Cao P and Cao K: MiR-20a inhibits cutaneous squamous cell carcinoma metastasis and proliferation by directly targeting LIMK1. Cancer Biol Ther. 15:1340–1349. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xiong Y, Zhang L and Kebebew E: MiR-20a is upregulated in anaplastic thyroid cancer and targets LIMK1. PLoS One. 9:e961032014. View Article : Google Scholar : PubMed/NCBI | |
Xie J, Liu M, Li Y, Nie Y, Mi Q and Zhao S: Ovarian tumor-associated microRNA-20a decreases natural killer cell cytotoxicity by downregulating MICA/B expression. Cell Mol Immunol. 11:495–502. 2014. View Article : Google Scholar : PubMed/NCBI | |
Qiang XF, Zhang ZW, Liu Q, Sun N, Pan LL, Shen J, Li T, Yun C, Li H and Shi LH: miR-20a promotes prostate cancer invasion and migration through targeting ABL2. J Cell Biochem. 115:1269–1276. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chang Y, Liu C, Yang J, Liu G, Feng F, Tang J, Hu L, Li L, Jiang F, Chen C, et al: MiR-20a triggers metastasis of gallbladder carcinoma. J Hepatol. 59:518–527. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bai X, Han G, Liu Y, Jiang H and He Q: MiRNA-20a-5p promotes the growth of triple-negative breast cancer cells through targeting RUNX3. Biomed Pharmacother. 103:1482–1489. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhao W, Geng D, Li S, Chen Z and Sun M: LncRNA HOTAIR influences cell growth, migration, invasion, and apoptosis via the miR-20a-5p/HMGA2 axis in breast cancer. Cancer Med. 7:842–855. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yuan G, Zhao Y, Wu D, Gao C and Jiao Z: miRNA-20a upregulates TAK1 and increases proliferation in osteosarcoma cells. Future Oncol. 14:461–469. 2018. View Article : Google Scholar : PubMed/NCBI | |
Si W, Shen J, Du C, Chen D, Gu X, Li C, Yao M, Pan J, Cheng J, Jiang D, et al: A miR-20a/MAPK1/c-Myc regulatory feedback loop regulates breast carcinogenesis and chemoresistance. Cell Death Differ. 25:406–420. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhao F, Pu Y, Cui M, Wang H and Cai S: MiR-20a-5p represses the multi-drug resistance of osteosarcoma by targeting the SDC2 gene. Cancer Cell Int. 17:1002017. View Article : Google Scholar : PubMed/NCBI | |
Liu L, He J, Wei X, Wan G, Lao Y, Xu W, Li Z, Hu H, Hu Z, Luo X, et al: MicroRNA-20a-mediated loss of autophagy contributes to breast tumorigenesis by promoting genomic damage and instability. Oncogene. 36:5874–5884. 2017. View Article : Google Scholar : PubMed/NCBI | |
Karimkhanloo H, Mohammadi-Yeganeh S, Ahsani Z and Paryan M: Bioinformatics prediction and experimental validation of microRNA-20a targeting Cyclin D1 in hepatocellular carcinoma. Tumour Biol. 39:10104283176983612017. View Article : Google Scholar : PubMed/NCBI | |
Shen J, Pan J, Du C, Si W, Yao M, Xu L, Zheng H, Xu M, Chen D, Wang S, et al: Silencing NKG2D ligand-targeting miRNAs enhances natural killer cell-mediated cytotoxicity in breast cancer. Cell Death Dis. 8:e27402017. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Wang X, Cheng J, Wang Z, Jiang T, Hou N, Liu N, Song T and Huang C: MicroRNA-20a-5p targets RUNX3 to regulate proliferation and migration of human hepatocellular cancer cells. Oncol Rep. 36:3379–3386. 2016. View Article : Google Scholar : PubMed/NCBI | |
Pu Y, Yi Q, Zhao F, Wang H, Cai W and Cai S: MiR-20a-5p represses multi-drug resistance in osteosarcoma by targeting the KIF26B gene. Cancer Cell Int. 16:642016. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Zheng L, Ding Y, Li Q, Wang R, Liu T, Sun Q, Yang H, Peng S, Wang W, et al: MiR-20a Induces Cell Radioresistance by Activating the PTEN/PI3K/Akt Signaling Pathway in Hepatocellular Carcinoma. Int J Radiat Oncol Biol Phys. 92:1132–1140. 2015. View Article : Google Scholar : PubMed/NCBI | |
Laussmann MA, Passante E, Hellwig CT, Tomiczek B, Flanagan L, Prehn JH, Huber HJ and Rehm M: Proteasome inhibition can impair caspase-8 activation upon submaximal stimulation of apoptotic tumor necrosis factor-related apoptosis inducing ligand (TRAIL) signaling. J Biol Chem. 287:14402–14411. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li H, Zhu H, Xu CJ and Yuan J: Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell. 94:491–501. 1998. View Article : Google Scholar : PubMed/NCBI | |
Orzechowska EJ, Girstun A, Staron K and Trzcinska-Danielewicz J: Synergy of BID with doxorubicin in the killing of cancer cells. Oncol Rep. 33:2143–2150. 2015.PubMed/NCBI | |
Eskes R, Desagher S, Antonsson B and Martinou JC: Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol Cell Biol. 20:929–935. 2000. View Article : Google Scholar : PubMed/NCBI | |
Zhang GJ, Li Y, Zhou H, Xiao HX and Zhou T: miR-20a is an independent prognostic factor in colorectal cancer and is involved in cell metastasis. Mol Med Rep. 10:283–291. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cheng D, Zhao S, Tang H, Zhang D, Sun H, Yu F, Jiang W, Yue B, Wang J, Zhang M, et al: MicroRNA-20a-5p promotes colorectal cancer invasion and metastasis by downregulating Smad4. Oncotarget. 7:45199–45213. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gonzalez DM and Medici D: Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal. 7:re82014. View Article : Google Scholar : PubMed/NCBI | |
Longqiu Y, Pengcheng L, Xuejie F and Peng Z: A miRNAs panel promotes the proliferation and invasion of colorectal cancer cells by targeting GABBR1. Cancer Med. 5:2022–2031. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jiang X, Su L, Zhang Q, He C, Zhang Z, Yi P and Liu J: GABAB receptor complex as a potential target for tumor therapy. J Histochem Cytochem. 60:269–279. 2012. View Article : Google Scholar : PubMed/NCBI | |
Peters HC, Kämmer G, Volz A, Kaupmann K, Ziegler A, Bettler B, Epplen JT, Sander T and Riess O: Mapping, genomic structure, and polymorphisms of the human GABABR1 receptor gene: Evaluation of its involvement in idiopathic generalized epilepsy. Neurogenetics. 2:47–54. 1998. View Article : Google Scholar : PubMed/NCBI | |
Yates KE, Korbel GA, Shtutman M, Roninson IB and DiMaio D: Repression of the SUMO-specific protease Senp1 induces p53-dependent premature senescence in normal human fibroblasts. Aging Cell. 7:609–621. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ferlay J, Shin HR, Bray F, Forman D, Mathers C and Parkin DM: Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 127:2893–2917. 2010. View Article : Google Scholar : PubMed/NCBI | |
Melchior F and Hengst L: SUMO-1 and p53. Cell Cycle. 1:245–249. 2002. View Article : Google Scholar : PubMed/NCBI | |
Agostini M, Pucciarelli S, Calore F, Bedin C, Enzo M and Nitti D: miRNAs in colon and rectal cancer: A consensus for their true clinical value. Clin Chim Acta. 411:1181–1186. 2010. View Article : Google Scholar : PubMed/NCBI | |
Slattery ML, Herrick JS, Pellatt DF, Stevens JR, Mullany LE, Wolff E, Hoffman MD, Samowitz WS and Wolff RK: MicroRNA profiles in colorectal carcinomas, adenomas and normal colonic mucosa: Variations in miRNA expression and disease progression. Carcinogenesis. 37:245–261. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tan YG, Zhang YF, Guo CJ, Yang M and Chen MY: Screening of differentially expressed microRNA in ulcerative colitis related colorectal cancer. Asian Pac J Trop Med. 6:972–976. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bovell L, Shanmugam C, Katkoori VR, Zhang B, Vogtmann E, Grizzle WE and Manne U: miRNAs are stable in colorectal cancer archival tissue blocks. Front Biosci (Elite Ed). 4:1937–1940. 2012. View Article : Google Scholar : PubMed/NCBI | |
Pellatt DF, Stevens JR, Wolff RK, Mullany LE, Herrick JS, Samowitz W and Slattery ML: Expression profiles of miRNA subsets distinguish human colorectal carcinoma and normal colonic mucosa. Clin Transl Gastroenterol. 7:e1522016. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Xu T, Hu X, Chen X, Zeng K, Sun L and Wang S: Elevated circulating miR-182 acts as a diagnostic biomarker for early colorectal cancer. Cancer Manag Res. 10:857–865. 2018. View Article : Google Scholar : PubMed/NCBI | |
Emami SS, Akbari A, Zare AA, Agah S, Masoodi M, Talebi A, Minaeian S, Fattahi A and Moghadamnia F: MicroRNA expression levels and histopathological features of colorectal cancer. J Gastrointest Cancer. 50:276–284. 2019. View Article : Google Scholar : PubMed/NCBI | |
Brunet Vega A, Pericay C, Moya I, Ferrer A, Dotor E, Pisa A, Casalots À, Serra-Aracil X, Oliva JC, Ruiz A, et al: microRNA expression profile in stage III colorectal cancer: Circulating miR-18a and miR-29a as promising biomarkers. Oncol Rep. 30:320–326. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhang JX, Song W, Chen ZH, Wei JH, Liao YJ, Lei J, Hu M, Chen GZ, Liao B, Lu J, et al: Prognostic and predictive value of a microRNA signature in stage II colon cancer: A microRNA expression analysis. Lancet Oncol. 14:1295–1306. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zekri AR, Youssef AS, Lotfy MM, Gabr R, Ahmed OS, Nassar A, Hussein N, Omran D, Medhat E, Eid S, et al: Circulating serum miRNAs as diagnostic markers for colorectal cancer. PLoS One. 11:e01541302016. View Article : Google Scholar : PubMed/NCBI | |
Eslamizadeh S, Heidari M, Agah S, Faghihloo E, Ghazi H, Mirzaei A and Akbari A: The role of microRNA signature as diagnostic biomarkers in different clinical stages of colorectal cancer. Cell J. 20:220–230. 2018.PubMed/NCBI | |
Yang Q, Wang S, Huang J, Xia C, Jin H and Fan Y: Serum miR-20a and miR-486 are potential biomarkers for discriminating colorectal neoplasia: A pilot study. J Cancer Res Ther. 14:1572–1577. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yamazaki N, Koga Y, Yamamoto S, Kakugawa Y, Otake Y, Hayashi R, Saito N and Matsumura Y: Application of the fecal microRNA test to the residuum from the fecal occult blood test. Jpn J Clin Oncol. 43:726–733. 2013. View Article : Google Scholar : PubMed/NCBI | |
Rotelli MT, Di Lena M, Cavallini A, Lippolis C, Bonfrate L, Chetta N, Portincasa P and Altomare DF: Fecal microRNA profile in patients with colorectal carcinoma before and after curative surgery. Int J Colorectal Dis. 30:891–898. 2015. View Article : Google Scholar : PubMed/NCBI | |
Meng F, Henson R, Lang M, Wehbe H, Maheshwari S, Mendell JT, Jiang J, Schmittgen TD and Patel T: Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology. 130:2113–2129. 2006. View Article : Google Scholar : PubMed/NCBI | |
Xia L, Zhang D, Du R, Pan Y, Zhao L, Sun S, Hong L, Liu J and Fan D: miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells. Int J Cancer. 123:372–379. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kovalchuk O, Filkowski J, Meservy J, Ilnytskyy Y, Tryndyak VP, Chekhun VF and Pogribny IP: Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol Cancer Ther. 7:2152–2159. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ma J, Dong C and Ji C: MicroRNA and drug resistance. Cancer Gene Ther. 17:523–531. 2010. View Article : Google Scholar : PubMed/NCBI | |
Li X, Wang H, Wang J, Chen Y, Yin X, Shi G, Li H, Hu Z and Liang X: Emodin enhances cisplatin-induced cytotoxicity in human bladder cancer cells through ROS elevation and MRP1 downregulation. BMC Cancer. 16:5782016. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, He L, Zhang H and Chen Y: Knockdown of miR-20a enhances sensitivity of colorectal cancer cells to cisplatin by increasing ASK1 expression. Cell Physiol Biochem. 47:1432–1441. 2018. View Article : Google Scholar : PubMed/NCBI | |
Molinari C, Salvi S, Foca F, Teodorani N, Saragoni L, Puccetti M, Passardi A, Tamberi S, Avanzolini A, Lucci E, et al: miR-17-92a-1 cluster host gene (MIR17HG) evaluation and response to neoadjuvant chemoradiotherapy in rectal cancer. Onco Targets Ther. 9:2735–2742. 2016.PubMed/NCBI | |
Azizian A, Kramer F, Jo P, Wolff HA, Beißbarth T, Skarupke R, Bernhardt M, Grade M, Ghadimi BM and Gaedcke J: Preoperative prediction of lymph node status by circulating mir-18b and mir-20a during chemoradiotherapy in patients with rectal cancer. World J Surg. 39:2329–2335. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jo P, Azizian A, Salendo J, Kramer F, Bernhardt M, Wolff HA, Gruber J, Grade M, Beißbarth T, Ghadimi BM, et al: Changes of microrna levels in plasma of patients with rectal cancer during chemoradiotherapy. Int J Mol Sci. 18:182017. View Article : Google Scholar | |
Okugawa Y, Toiyama Y and Goel A: An update on microRNAs as colorectal cancer biomarkers: Where are we and what's next? Expert Rev Mol Diagn. 14:999–1021. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Zhang K, Bi M, Jiao X, Zhang D and Dong Q: Circulating microRNA expressions in colorectal cancer as predictors of response to chemotherapy. Anticancer Drugs. 25:346–352. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xie T, Li Y, Li SL and Luo HF: Astragaloside IV enhances cisplatin chemosensitivity in human colorectal cancer via regulating NOTCH3. Oncol Res. 24:447–453. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ma MZ, Chen G, Wang P, Lu WH, Zhu CF, Song M, Yang J, Wen S, Xu RH, Hu Y, et al: Xc- inhibitor sulfasalazine sensitizes colorectal cancer to cisplatin by a GSH-dependent mechanism. Cancer Lett. 368:88–96. 2015. View Article : Google Scholar : PubMed/NCBI | |
Aouacheria A, Brunet F and Gouy M: Phylogenomics of life-or-death switches in multicellular animals: Bcl-2, BH3-Only, and BNip families of apoptotic regulators. Mol Biol Evol. 22:2395–2416. 2005. View Article : Google Scholar : PubMed/NCBI | |
Chai H, Liu M, Tian R, Li X and Tang H: miR-20a targets BNIP2 and contributes chemotherapeutic resistance in colorectal adenocarcinoma SW480 and SW620 cell lines. Acta Biochim Biophys Sin (Shanghai). 43:217–225. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ashrafizadeh M, Ezzati H, Ahmadi Z, Farkhondeh T and Samarghandian S: Anti-tumor activity of propofol: A focus on microRNAs. Curr Cancer Drug Targets. 19:2019, https://doi.org/10.2174/1568009619666191023100046 View Article : Google Scholar | |
Ji R, Zhang X, Gu H, Ma J, Wen X, Zhou J, Qian H, Xu W, Qian J and Lin J: miR-374a-5p: A New Target for Diagnosis and Drug Resistance Therapy in Gastric Cancer. Mol Ther Nucleic Acids. 18:320–331. 2019. View Article : Google Scholar : PubMed/NCBI | |
Luo X, Burwinkel B, Tao S and Brenner H: MicroRNA signatures: Novel biomarker for colorectal cancer? Cancer Epidemiol Biomarkers Prev. 20:1272–1286. 2011. View Article : Google Scholar : PubMed/NCBI | |
Caritg O, Navarro A, Moreno I, Martínez-Rodenas F, Cordeiro A, Muñoz C, Ruiz-Martinez M, Santasusagna S, Castellano JJ and Monzó M: Identifying high-risk stage II colon cancer patients: A three-microRNA-based score as a prognostic biomarker. Clin Colorectal Cancer. 15:e175–e182. 2016. View Article : Google Scholar : PubMed/NCBI | |
Schetter AJ, Leung SY, Sohn JJ, Zanetti KA, Bowman ED, Yanaihara N, Yuen ST, Chan TL, Kwong DL, Au GK, et al: MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA. 299:425–436. 2008. View Article : Google Scholar : PubMed/NCBI | |
Pesta M, Kucera R, Topolcan O, Karlikova M, Houfkova K, Polivka J, Macanova T, Machova I, Slouka D and Kulda V: Plasma microRNA levels combined with CEA and CA19-9 in the follow-up of colorectal cancer patients. Cancers (Basel). 11:112019. View Article : Google Scholar | |
Gandhy SU, Kim K, Larsen L, Rosengren RJ and Safe S: Curcumin and synthetic analogs induce reactive oxygen species and decreases specificity protein (Sp) transcription factors by targeting microRNAs. BMC Cancer. 12:5642012. View Article : Google Scholar : PubMed/NCBI | |
Choi JB, Kim JH, Lee H, Pak JN, Shim BS and Kim SH: Reactive Oxygen Species and p53 Mediated Activation of p38 and Caspases is Critically Involved in Kaempferol Induced Apoptosis in Colorectal Cancer Cells. J Agric Food Chem. 66:9960–9967. 2018. View Article : Google Scholar : PubMed/NCBI | |
Pehserl AM, Ress AL, Stanzer S, Resel M, Karbiener M, Stadelmeyer E, Stiegelbauer V, Gerger A, Mayr C, Scheideler M, et al: Comprehensive Analysis of miRNome Alterations in Response to Sorafenib Treatment in Colorectal Cancer Cells. Int J Mol Sci. 17:172016. View Article : Google Scholar | |
Li R, Jiang J, Shi H, Qian H, Zhang X and Xu W: CircRNA: A rising star in gastric cancer. Cell Mol Life Sci. 2019:https://doi.org/10.1007/s00018-019-03345-5 | |
Su Q and Lv X: Revealing new landscape of cardiovascular disease through circular RNA-miRNA-mRNA axis. Genomics. S0888-7543(19)30565-8. 2019. View Article : Google Scholar | |
Xiu Y, Jiang G, Zhou S, Diao J, Liu H, Su B and Li C: Identification of potential immune-related circRNA-miRNA-mRNA regulatory network in intestine of paralichthys olivaceus during Edwardsiella tarda infection. Front Genet. 10:7312019. View Article : Google Scholar : PubMed/NCBI | |
Ping L, Jian-Jun C, Chu-Shu L, Guang-Hua L and Ming Z: Silencing of circ_0009910 inhibits acute myeloid leukemia cell growth through increasing miR-20a-5p. Blood Cells Mol Dis. 75:41–47. 2019. View Article : Google Scholar : PubMed/NCBI | |
Salmena L, Poliseno L, Tay Y, Kats L and Pandolfi PP: A ceRNA hypothesis: The Rosetta Stone of a hidden RNA language? Cell. 146:353–358. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Wu N, Wang J and Li Z: LncRNA MEG3 inhibits cell proliferation and induces apoptosis in laryngeal cancer via miR-23a/APAF-1 axis. J Cell Mol Med. 23:6708–6719. 2019. View Article : Google Scholar : PubMed/NCBI | |
Huang QR and Pan XB: Prognostic lncRNAs, miRNAs, and mRNAs form a competing endogenous RNA network in colon cancer. Front Oncol. 9:7122019. View Article : Google Scholar : PubMed/NCBI |