1
|
Duong LM and Richardson LC: Descriptive
epidemiology of malignant primary osteosarcoma using
population-based registries, United States, 1999-2008. J Registry
Manag. 40:59–64. 2013.PubMed/NCBI
|
2
|
Mirabello L, Troisi RJ and Savage SA:
Osteosarcoma incidence and survival rates from 1973 to 2004: Data
from the Surveillance, Epidemiology, and End Results Program.
Cancer. 115:1531–1543. 2009.PubMed/NCBI View Article : Google Scholar
|
3
|
Wang S, Ren T, Huang Y, Bao X, Sun K, Shen
D and Guo W: BMPR2 and HIF1-α overexpression in resected
osteosarcoma correlates with distant metastasis and patient
survival. Chin J Cancer Res. 29:447–454. 2017.PubMed/NCBI View Article : Google Scholar
|
4
|
Angelini A, Ceci F, Castellucci P,
Graziani T, Polverari G, Trovarelli G, Palmerini E, Ferrari S,
Fanti S and Ruggieri P: The role of 18F-FDG PET/CT in
the detection of osteosarcoma recurrence. Eur J Nucl Med Mol
Imaging. 44:1712–1720. 2017.PubMed/NCBI View Article : Google Scholar
|
5
|
O'Kane GM, Cadoo KA, Walsh EM, Emerson R,
Dervan P, O'Keane C, Hurson B, O'Toole G, Dudeney S, Kavanagh E, et
al: Perioperative chemotherapy in the treatment of osteosarcoma: A
26-year single institution review. Clin Sarcoma Res.
5(17)2015.PubMed/NCBI View Article : Google Scholar
|
6
|
Hansen AR, Hughes BG, Paul S, Steadman P,
Sommerville S, Dickinson IC, Walpole ET, Thomson DB, Mar Fan HG and
Joubert WL: Single institution retrospective review of
perioperative chemotherapy in adult and adolescent patients with
operable osteosarcoma. Asia Pac J Clin Oncol. 12:e222–e228.
2014.PubMed/NCBI View Article : Google Scholar
|
7
|
Guenther LM, Rowe RG, Acharya PT, Swenson
DW, Meyer SC, Clinton CM, Guo D, Sridharan M, London WB, Grier HE,
et al: Response Evaluation Criteria in Solid Tumors (RECIST)
following neoadjuvant chemotherapy in osteosarcoma. Pediatr Blood
Cancer. 65(e26896)2018.PubMed/NCBI View Article : Google Scholar
|
8
|
Hayden MS and Ghosh S: NF-κB in
immunobiology. Cell Res. 21:223–244. 2011.PubMed/NCBI View Article : Google Scholar
|
9
|
Gilmore TD: Introduction to NF-kappaB:
Players, pathways, perspectives. Oncogene. 25:6680–6684.
2006.PubMed/NCBI View Article : Google Scholar
|
10
|
Burstein E and Duckett CS: Dying for
NF-kappaB? Control of cell death by transcriptional regulation of
the apoptotic machinery. Curr Opin Cell Biol. 15:732–737.
2003.PubMed/NCBI View Article : Google Scholar
|
11
|
Dutta J, Fan Y, Gupta N, Fan G and Gelinas
C: Current insights into the regulation of programmed cell death by
NF-kappaB. Oncogene. 25:6800–6816. 2016.PubMed/NCBI View Article : Google Scholar
|
12
|
Yu J, Zhang L, Hwang PM, Kinzler KW and
Vogelstein B: PUMA induces the rapid apoptosis of colorectal cancer
cells. Mol Cell. 7:673–682. 2001.PubMed/NCBI View Article : Google Scholar
|
13
|
Nakano K and Vousden KH: PUMA, a novel
proapoptotic gene, is induced by p53. Mol Cell. 7:683–694.
2001.PubMed/NCBI View Article : Google Scholar
|
14
|
Gurzov EN, Ortis F, Cunha DA, Gosset G, Li
M, Cardozo AK and Eizirik DL: Signaling by IL-1beta+IFN-gamma and
ER stress converge on DP5/Hrk activation: A novel mechanism for
pancreatic beta-cell apoptosis. Cell Death Differ. 16:1539–1550.
2009.PubMed/NCBI View Article : Google Scholar
|
15
|
Gurzov EN, Germano CM, Cunha DA, Ortis F,
Vanderwinden JM, Marchetti P, Zhang L and Eizirik DL: p53
up-regulated modulator of apoptosis (PUMA) activation contributes
to pancreatic beta-cell apoptosis induced by proinflammatory
cytokines and endoplasmic reticulum stress. J Biol Chem.
285:19910–19920. 2010.PubMed/NCBI View Article : Google Scholar
|
16
|
Zheng C, Chen Y, Jiang LL and Shi XM:
Antiproliferative metabolites from the endophytic fungus
Penicillium sp. FJ-1 isolated from a mangrove Avicennia
marina. Phytochem Lett. 10:272–275. 2014. View Article : Google Scholar
|
17
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
18
|
Li Y, Du W, Han J and Ge JB: LAMP3
promotes the invasion of osteosarcoma cells via SPP1 signaling. Mol
Med Rep. 16:5947–5953. 2017.PubMed/NCBI View Article : Google Scholar
|
19
|
Lussier DM, Johnson JL, Hingorani P and
Blattman JN: Combination immunotherapy with α-CTLA-4 and α-PD-L1
antibody blockade prevents immune escape and leads to complete
control of metastatic osteosarcoma. J Immunother Cancer.
3(21)2015.PubMed/NCBI View Article : Google Scholar
|
20
|
Strauss SJ, Ng T, Mendoza-Naranjo A,
Whelan J and Sorensen PH: Understanding micrometastatic disease and
Anoikis resistance in ewing family of tumors and osteosarcoma.
Oncologist. 15:627–635. 2010.PubMed/NCBI View Article : Google Scholar
|
21
|
Carrle D and Bielack S: Osteosarcoma lung
metastases detection and principles of multimodal therapy. Cancer
Treat Res. 152:165–184. 2009.PubMed/NCBI View Article : Google Scholar
|
22
|
Harting MT and Blakely ML: Management of
osteosarcoma pulmonary metastases. Semin Pediatr Surg. 15:25–29.
2006.PubMed/NCBI View Article : Google Scholar
|
23
|
Wang Z, Lu W, Li Y and Tang B: Alpinetin
promotes Bax translocation, induces apoptosis through the
mitochondrial pathway and arrests human gastric cancer cells at the
G2/M phase. Mol Med Rep. 7:915–920. 2013.PubMed/NCBI View Article : Google Scholar
|
24
|
Xue S, Chen YX, Qin SK, Yang AZ, Wang L,
Xu HJ and Geng HY: Raltitrexed induces mitochondrial-mediated
apoptosis in SGC7901 human gastric cancer cells. Mol Med Rep.
10:1927–1934. 2014.PubMed/NCBI View Article : Google Scholar
|
25
|
Xin BR, Liu JF, Kang J and Chan WP: (2R,
3S)-pinobanksin-3-cinnamate, a new flavonone from seeds of
Alpinia galanga willd., presents in vitro neuroprotective
effects. Mol Cell Toxicol. 10:165–172. 2014. View Article : Google Scholar
|
26
|
Zhao X, Kong F, Wang L and Zhang H: c-FLIP
and the NOXA/Mcl-1 axis participate in the synergistic effect of
pemetrexed plus cisplatin in human choroidal melanoma cells. PLoS
One. 12(e0184135)2017.PubMed/NCBI View Article : Google Scholar
|
27
|
Zhao X, Liu X and Su L: Parthenolide
induces apoptosis via TNFRSF10B and PMAIP1 pathways in human lung
cancer cells. J Exp Clin Cancer Res. 33(3)2014.PubMed/NCBI View Article : Google Scholar
|
28
|
Karin M and Lin A: NF-kappaB at the
crossroads of life and death. Nat Immunol. 3:221–227.
2002.PubMed/NCBI View Article : Google Scholar
|
29
|
Chen G and Goeddel DV: TNF-R1 signaling: A
beautiful pathway. Science. 296:1634–1635. 2002.PubMed/NCBI View Article : Google Scholar
|
30
|
Wang P, Yu J and Zhang L: The nuclear
function of p53 is required for PUMA-mediated apoptosis induced by
DNA damage. Proc Natl Acad Sci USA. 104:4054–4059. 2007.PubMed/NCBI View Article : Google Scholar
|
31
|
Wang P, Qiu W, Dudgeon C, Liu H, Huang C,
Zambetti GP, Yu J and Zhang L: PUMA is directly activated by
NF-kappaB and contributes to TNF-alpha-induced apoptosis. Cell
Death Differ. 16:1192–1202. 2009.PubMed/NCBI View Article : Google Scholar
|
32
|
Ming L, Wang P, Bank A, Yu J and Zhang L:
PUMA dissociates Bax and BCL-X(L) to induce apoptosis in colon
cancer cells. J Biol Chem. 281:16034–16042. 2006.PubMed/NCBI View Article : Google Scholar
|
33
|
Jeffers JR, Parganas E, Lee Y, Yang C,
Wang J, Brennan J, MacLean KH, Han J, Chittenden T, Ihle JN, et al:
Puma is an essential mediator of p53-dependent and -independent
apoptotic pathways. Cancer Cell. 4:321–328. 2003.PubMed/NCBI View Article : Google Scholar
|
34
|
Villunger A, Michalak EM, Coultas L,
Mullauer F, Bock G, Ausserlechner MJ, Adams JM and Strasser A: p53-
and drug-induced apoptotic responses mediated by BH3-only proteins
Puma and Noxa. Science. 302:1036–1038. 2003.PubMed/NCBI View Article : Google Scholar
|
35
|
Sun YF, Xia P, Zhang HP, Liu B and Shi Y:
P53 is required for doxorubicin-induced apoptosis via the TGF-beta
signaling pathway in osteosarcoma-derived cell. Am J Cancer Res.
6:114–125. 2016.PubMed/NCBI
|