1
|
Sehba FA, Hou J, Pluta RM and Zhang JH:
The importance of early brain injury after subarachnoid hemorrhage.
Prog Neurobiol. 97:14–37. 2012.PubMed/NCBI View Article : Google Scholar
|
2
|
Kooijman E, Nijboer CH, van Velthoven CT,
Kavelaars A, Kesecioglu J and Heijnen CJ: The rodent endovascular
puncture model of subarachnoid hemorrhage: Mechanisms of brain
damage and therapeutic strategies. J Neuroinflammation.
11(2)2014.PubMed/NCBI View Article : Google Scholar
|
3
|
Kikkawa Y, Kurogi R and Sasaki T: The
single and double blood injection rabbit subarachnoid hemorrhage
model. Transl Stroke Res. 6:88–97. 2015.PubMed/NCBI View Article : Google Scholar
|
4
|
Marbacher S, Grüter B, Schöpf S, Croci D,
Nevzati E, D'Alonzo D, Lattmann J, Roth T, Bircher B, Wolfert C, et
al: Systematic review of in vivo animal models of subarachnoid
hemorrhage: Species, standard parameters, and outcomes. Transl
Stroke Res. Sep 12, 2018.(Epub ahead of print). PubMed/NCBI View Article : Google Scholar
|
5
|
Miller BA, Turan N, Chau M and Pradilla G:
Inflammation, vasospasm, and brain injury after subarachnoid
hemorrhage. Biomed Res Int. 2014(384342)2014.PubMed/NCBI View Article : Google Scholar
|
6
|
de Oliveira Manoel AL and Macdonald RL:
Neuroinflammation as a target for intervention in subarachnoid
hemorrhage. Front Neurol. 9(292)2018.PubMed/NCBI View Article : Google Scholar
|
7
|
Lad SP, Hegen H, Gupta G, Deisenhammer F
and Steinberg GK: Proteomic biomarker discovery in cerebrospinal
fluid for cerebral vasospasm following subarachnoid hemorrhage. J
Stroke Cerebrovasc Dis. 21:30–41. 2012.PubMed/NCBI View Article : Google Scholar
|
8
|
Lewis SB, Velat GJ, Miralia L, Papa L,
Aikman JM, Wolper RA, Firment CS, Liu MC, Pineda JA, Wang KK and
Hayes RL: Alpha-II spectrin breakdown products in aneurysmal
subarachnoid hemorrhage: A novel biomarker of proteolytic injury. J
Neurosurg. 107:792–796. 2007.PubMed/NCBI View Article : Google Scholar
|
9
|
Siman R, Giovannone N, Toraskar N, Frangos
S, Stein SC, Levine JM and Kumar MA: Evidence that a panel of
neurodegeneration biomarkers predicts vasospasm, infarction, and
outcome in aneurysmal subarachnoid hemorrhage. PLoS One.
6(e28938)2011.PubMed/NCBI View Article : Google Scholar
|
10
|
Papa L, Rosenthal K, Silvestri F, Axley
JC, Kelly JM and Lewis SB: Evaluation of alpha-II-spectrin
breakdown products as potential biomarkers for early recognition
and severity of aneurysmal subarachnoid hemorrhage. Sci Rep.
8(13308)2018.PubMed/NCBI View Article : Google Scholar
|
11
|
Wang W, Han P, Xie R, Yang M, Zhang C, Mi
Q, Sun B and Zhang Z: TAT-mGluR1 attenuation of neuronal apoptosis
through Prevention of MGluR1α truncation after experimental
subarachnoid hemorrhage. ACS Chem Neurosci. 10:746–756.
2018.PubMed/NCBI View Article : Google Scholar
|
12
|
Czogalla A and Sikorski AF: Spectrin and
calpain: A ‘target’ and a ‘sniper’ in the pathology of neuronal
cells. Cell Mol Life Sci. 62:1913–1924. 2005.PubMed/NCBI View Article : Google Scholar
|
13
|
Zhou YD and Cai L: Calpeptin reduces
neurobehavioral deficits and neuronal apoptosis following
subarachnoid hemorrhage in rats. J Stroke Cerebrovasc Dis.
28:125–132. 2019.PubMed/NCBI View Article : Google Scholar
|
14
|
Cheng SY, Wang SC, Lei M, Wang Z and Xiong
K: Regulatory role of calpain in neuronal death. Neural Regen Res.
13:556–562. 2018.PubMed/NCBI View Article : Google Scholar
|
15
|
Goll DE, Thompson VF, Li H, Wei W and Cong
J: The calpain system. Physiol Rev. 83:731–801. 2003.PubMed/NCBI View Article : Google Scholar
|
16
|
Germanò A, Costa C, DeFord SM, Angileri
FF, Arcadi F, Pike BR, Bramanti P, Bausano B, Zhao X, Day AL, et
al: Systemic administration of a calpain inhibitor reduces
behavioral deficits and blood-brain barrier permeability changes
after experimental subarachnoid hemorrhage in the rat. J
Neurotrauma. 19:887–896. 2002.PubMed/NCBI View Article : Google Scholar
|
17
|
Wendt A, Thompson VF and Goll DE:
Interaction of calpastatin with calpain: a review. Biol Chem.
385:465–472. 2004.PubMed/NCBI View Article : Google Scholar
|
18
|
National Research Council (US) Committee
for the Update of the Guide for the Care and Use of Laboratory
Animals: Guide for the Care and Use of Laboratory Animals. 8th
edition. National Academies Press (US), Washington, DC, 2011.
|
19
|
Sugawara T, Ayer R, Jadhav V and Zhang JH:
A new grading system evaluating bleeding scale in filament
perforation subarachnoid hemorrhage rat model. J Neurosci Methods.
167:327–334. 2008.PubMed/NCBI View Article : Google Scholar
|
20
|
Zhang ZY, Jiang M, Fang J, Yang MF, Zhang
S, Yin YX, Li DW, Mao LL, Fu XY, Hou YJ, et al: Enhanced
therapeutic potential of nano-curcumin against subarachnoid
hemorrhage-induced blood-brain barrier disruption through
inhibition of inflammatory response and oxidative stress. Mol
Neurobiol. 54:1–14. 2017.PubMed/NCBI View Article : Google Scholar
|
21
|
Zhang ZY, Sun BL, Liu JK, Yang MF, Li DW,
Fang J, Zhang S, Yuan QL and Huang SL: Activation of mGluR5
attenuates microglial activation and neuronal apoptosis in early
brain injury after experimental subarachnoid hemorrhage in rats.
Neurochem Res. 40:1121–1132. 2015.PubMed/NCBI View Article : Google Scholar
|
22
|
Wu Q, Qi L, Li H, Mao L, Yang M, Xie R,
Yang X, Wang J, Zhang Z, Kong J and Sun B: Roflumilast reduces
cerebral inflammation in a rat model of experimental subarachnoid
hemorrhage. Inflammation. 40:1245–1253. 2017.PubMed/NCBI View Article : Google Scholar
|
23
|
Fan LF, He PY, Peng YC, Du QH, Ma YJ, Jin
JX, Xu HZ, Li JR, Wang ZJ, Cao SL, et al: Mdivi-1 ameliorates early
brain injury after subarachnoid hemorrhage via the suppression of
inflammation-related blood-brain barrier disruption and endoplasmic
reticulum stress-based apoptosis. Free Radic Biol Med. 112:336–349.
2017.PubMed/NCBI View Article : Google Scholar
|
24
|
Yildiz-Unal A, Korulu S and Karabay A:
Neuroprotective strategies against calpain-mediated
neurodegeneration. Neuropsychiatr Dis Treat. 11:297–310.
2015.PubMed/NCBI View Article : Google Scholar
|
25
|
Feng D, Wang W, Dong Y, Wu L, Huang J, Ma
Y, Zhang Z, Wu S, Gao G and Qin H: Ceftriaxone alleviates early
brain injury after subarachnoid hemorrhage by increasing excitatory
amino acid transporter 2 expression via the PI3K/Akt/NF-κB
signaling pathway. Neuroscience. 268:21–32. 2014.PubMed/NCBI View Article : Google Scholar
|
26
|
Schubert GA, Poli S, Mendelowitsch A,
Schilling L and Thome C: Hypothermia reduces early hypoperfusion
and metabolic alterations during the acute phase of massive
subarachnoid hemorrhage: A laser-Doppler-flowmetry and
microdialysis study in rats. J Neurotrauma. 25:539–548.
2008.PubMed/NCBI View Article : Google Scholar
|
27
|
Wu CT, Wen LL, Wong CS, Tsai SY, Chan SM,
Yeh CC, Borel CO and Cherng CH: Temporal changes in glutamate,
glutamate transporters, basilar arteries wall thickness, and
neuronal variability in an experimental rat model of subarachnoid
hemorrhage. Anesth Analg. 112:666–673. 2011.PubMed/NCBI View Article : Google Scholar
|
28
|
Zhang Z, Liu J, Fan C, Mao L, Xie R, Wang
S, Yang M, Yuan H, Yang X, Sun J, et al: The GluN1/GluN2B NMDA
receptor and metabotropic glutamate receptor 1 negative allosteric
modulator has enhanced neuroprotection in a rat subarachnoid
hemorrhage model. Exp Neurol. 301:13–25. 2018.PubMed/NCBI View Article : Google Scholar
|
29
|
Yamaura I, Tani E, Saido TC, Suzuki K,
Minami N and Maeda Y: Calpain-calpastatin system of canine basilar
artery in vasospasm. J Neurosurg. 79:537–543. 1993.PubMed/NCBI View Article : Google Scholar
|
30
|
Wang KK, Posmantur R, Nadimpalli R, Nath
R, Mohan P, Nixon RA, Talanian RV, Keegan M, Herzog L and Allen H:
Caspase-mediated fragmentation of calpain inhibitor protein
calpastatin during apoptosis. Arch Biochem Biophys. 356:187–196.
1998.PubMed/NCBI View Article : Google Scholar
|
31
|
Rami A, Volkmann T, Agarwal R, Schoninger
S, Nürnberger F, Saido TC and Winckler J: beta2-Adrenergic receptor
responsiveness of the calpain-calpastatin system and attenuation of
neuronal death in rat hippocampus after transient global ischemia.
Neurosci Res. 47:373–382. 2003.PubMed/NCBI View Article : Google Scholar
|
32
|
Feng D, Wang B, Ma Y, Shi W, Tao K, Zeng
W, Cai Q, Zhang Z and Qin H: The Ras/Raf/Erk pathway mediates the
subarachnoid hemorrhage-induced Apoptosis of hippocampal neurons
through phosphorylation of p53. Mol Neurobiol. 53:5737–5748.
2016.PubMed/NCBI View Article : Google Scholar
|
33
|
Hong Y, Shao A, Wang J, Chen S, Wu H,
McBride DW, Wu Q, Sun X and Zhang J: Neuroprotective effect of
hydrogen-rich saline against neurologic damage and apoptosis in
early brain injury following subarachnoid hemorrhage: Possible role
of the Akt/GSK3β signaling pathway. PLoS One.
9(e96212)2014.PubMed/NCBI View Article : Google Scholar
|
34
|
Gao G and Dou QP: N-terminal cleavage of
bax by calpain generates a potent proapoptotic 18-kDa fragment that
promotes bcl-2-independent cytochrome C release and apoptotic cell
death. J Cell Biochem. 80:53–72. 2000.PubMed/NCBI View Article : Google Scholar
|
35
|
Boehmerle W and Endres M: Salinomycin
induces calpain and cytochrome c-mediated neuronal cell death. Cell
Death Dis. 2(e168)2011.PubMed/NCBI View Article : Google Scholar
|