1
|
Verrecchia F and Rédini F: Transforming
growth factor-β signaling plays a pivotal role in the interplay
between osteosarcoma cells and their microenvironment. Front Oncol.
8(133)2018.PubMed/NCBI View Article : Google Scholar
|
2
|
Luetke A, Meyers PA, Lewis I and Juergens
H: Osteosarcoma treatment-Where do we stand? A state of the art
review. Cancer Treat Rev. 40:523–532. 2014.PubMed/NCBI View Article : Google Scholar
|
3
|
Piletic K and Kunej T: MicroRNA epigenetic
signatures in human disease. Arch Toxicol. 90:2405–2419.
2016.PubMed/NCBI View Article : Google Scholar
|
4
|
Apprey V, Wang S, Tang W, Kittles RA,
Southerland WM, Ittmann M and Kwabi-Addo B: Association of Genetic
ancestry with DNA methylation changes in prostate cancer disparity.
Anticancer Res. 39:5861–5866. 2019.PubMed/NCBI View Article : Google Scholar
|
5
|
Lin S and Gregory RI: MicroRNA biogenesis
pathways in cancer. Nat Rev Cancer. 15:321–333. 2015.PubMed/NCBI View
Article : Google Scholar
|
6
|
Wang J, Liu S, Shi J, Li J, Wang S, Liu H,
Zhao S, Duan K, Pan X and Yi Z: The Role of miRNA in the diagnosis,
prognosis, and treatment of osteosarcoma. Cancer Biother
Radiopharm. 34:605–613. 2019.PubMed/NCBI View Article : Google Scholar
|
7
|
Ma X, Li D, Gao Y and Liu C: miR-451a
inhibits the growth and invasion of osteosarcoma via targeting
TRIM66. Technol Cancer Res Treat.
18(1533033819870209)2019.PubMed/NCBI View Article : Google Scholar
|
8
|
Marx V: Meet some code-breakers of
noncoding RNAs. Nat Methods. 15:103–106. 2018.PubMed/NCBI View Article : Google Scholar
|
9
|
Yamamoto N, Nishikawa R, Chiyomaru T, Goto
Y, Fukumoto I, Usui H, Mitsuhashi A, Enokida H, Nakagawa M, Shozu M
and Seki N: The tumor-suppressive microRNA-1/133a cluster targets
PDE7A and inhibits cancer cell migration and invasion in
endometrial cancer. Int J Oncol. 47:325–334. 2015.PubMed/NCBI View Article : Google Scholar
|
10
|
Wong N and Wang X: miRDB: An online
resource for microRNA target prediction and functional annotations.
Nucleic Acids Res. 43:D146–D152. 2015.PubMed/NCBI View Article : Google Scholar
|
11
|
Xiang W, He J, Huang C, Chen L, Tao D, Wu
X, Wang M, Luo G, Xiao X, Zeng F and Jiang G: miR-106b-5p targets
tumor suppressor gene SETD2 to inactive its function in clear cell
renal cell carcinoma. Oncotarget. 6:4066–4079. 2015.PubMed/NCBI View Article : Google Scholar
|
12
|
Shi DM, Bian XY, Qin CD and Wu WZ:
miR-106b-5p promotes stem cell-like properties of hepatocellular
carcinoma cells by targeting PTEN via PI3K/Akt pathway. Onco
Targets Ther. 11:571–585. 2018.PubMed/NCBI View Article : Google Scholar
|
13
|
Liu F, Gong J, Huang W, Wang Z, Wang M,
Yang J, Wu C, Wu Z and Han B: MicroRNA-106b-5p boosts glioma
tumorigensis by targeting multiple tumor suppressor genes.
Oncogene. 33:4813–4822. 2014.PubMed/NCBI View Article : Google Scholar
|
14
|
Chen X, Chen P, Chen SS, Ma T, Shi G, Zhou
Y, Li J and Sheng L: miR106b5p promotes cell cycle progression of
malignant melanoma by targeting PTEN. Oncol Rep. 39:331–337.
2018.PubMed/NCBI View Article : Google Scholar
|
15
|
Wei K, Pan C, Yao G, Liu B, Ma T, Xia Y,
Jiang W, Chen L and Chen Y: MiR-106b-5p promotes proliferation and
inhibits apoptosis by regulating BTG3 in Non-small cell lung
cancer. Cell Physiol Biochem. 44:1545–1558. 2017.PubMed/NCBI View Article : Google Scholar
|
16
|
Malumbres M: Cyclin-dependent kinases.
Genome Biol. 15(122)2014.PubMed/NCBI View
Article : Google Scholar
|
17
|
Kreis NN, Louwen F and Yuan J: Less
understood issues: p21(Cip1) in mitosis and its therapeutic
potential. Oncogene. 34:1758–1767. 2015.PubMed/NCBI View Article : Google Scholar
|
18
|
Abbas T and Dutta A: p21 in cancer:
Intricate networks and multiple activities. Nat Rev Cancer.
9:400–414. 2009.PubMed/NCBI View
Article : Google Scholar
|
19
|
Fitzgerald AL, Osman AA, Xie TX, Patel A,
Skinner H, Sandulache V and Myers JN: Reactive oxygen species and
p21Waf1/Cip1 are both essential for p53-mediated senescence of head
and neck cancer cells. Cell Death Dis. 6(e1678)2015.PubMed/NCBI View Article : Google Scholar
|
20
|
Wu Z, Liu K, Wang Y, Xu Z, Meng J and Gu
S: Upregulation of microRNA-96 and its oncogenic functions by
targeting CDKN1A in bladder cancer. Cancer Cell Int.
15(107)2015.PubMed/NCBI View Article : Google Scholar
|
21
|
Ohta K, Hoshino H, Wang J, Ono S, Iida Y,
Hata K, Huang SK, Colquhoun S and Hoon DS: MicroRNA-93 activates
c-Met/PI3K/Akt pathway activity in hepatocellular carcinoma by
directly inhibiting PTEN and CDKN1A. Oncotarget. 6:3211–3224.
2015.PubMed/NCBI View Article : Google Scholar
|
22
|
Brock M, Haider TJ, Vogel J, Gassmann M,
Speich R, Trenkmann M, Ulrich S, Kohler M and Huber LC: The
hypoxia-induced microRNA-130a controls pulmonary smooth muscle cell
proliferation by directly targeting CDKN1A. Int J Biochem Cell
Biol. 61:129–137. 2015.PubMed/NCBI View Article : Google Scholar
|
23
|
Fornari F, Milazzo M, Chieco P, Negrini M,
Marasco E, Capranico G, Mantovani V, Marinello J, Sabbioni S,
Callegari E, et al: In hepatocellular carcinoma miR-519d is
up-regulated by p53 and DNA hypomethylation and targets CDKN1A/p21,
PTEN, AKT3 and TIMP2. J Pathol. 227:275–285. 2012.PubMed/NCBI View Article : Google Scholar
|
24
|
Shao M, Geng Y, Lu P, Xi Y, Wei S, Wang L,
Fan Q and Ma W: miR-4295 promotes cell proliferation and invasion
in anaplastic thyroid carcinoma via CDKN1A. Biochem Biophys Res
Commun. 464:1309–1313. 2015.PubMed/NCBI View Article : Google Scholar
|
25
|
Zhao X, Yang Y, Xu J, Luo Y, Xin Y and
Wang Y: Downregulation of microRNA-95-3p suppresses cell growth of
osteosarcoma via CDKN1A/p21 expression. Oncol Rep. 39:289–297.
2018.PubMed/NCBI View Article : Google Scholar
|
26
|
Livak K and Schmittgen T: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2000.PubMed/NCBI View Article : Google Scholar
|
27
|
Ni S, Weng W, Xu M, Wang Q, Tan C, Sun H,
Wang L, Huang D, Du X and Sheng W: miR-106b-5p inhibits the
invasion and metastasis of colorectal cancer by targeting CTSA.
Onco Targets Ther. 11:3835–3845. 2018.PubMed/NCBI View Article : Google Scholar
|
28
|
Lee E, Collazo-Lorduy A, Castillo-Martin
M, Gong Y, Wang L, Oh WK, Galsky MD, Cordon-Cardo C and Zhu J:
Identification of microR-106b as a prognostic biomarker of p53-like
bladder cancers by ActMiR. Oncogene. 37:5858–5872. 2018.PubMed/NCBI View Article : Google Scholar
|
29
|
Evan GI and Vousden KH: Proliferation,
cell cycle and apoptosis in cancer. Nature. 411:342–348.
2001.PubMed/NCBI View
Article : Google Scholar
|
30
|
Wood DJ and Endicott JA: Structural
insights into the functional diversity of the CDK-cyclin family.
Open Biol. 8(180112)2018.PubMed/NCBI View Article : Google Scholar
|
31
|
Sánchez-Martínez C, Gelbert LM, Lallena MJ
and de Dios A: Cyclin dependent kinase (CDK) inhibitors as
anticancer drugs. Bioorg Med Chem Lett. 25:3420–3435.
2015.PubMed/NCBI View Article : Google Scholar
|
32
|
Abbadie C, Pluquet O and Pourtier A:
Epithelial cell senescence: An adaptive response to
pre-carcinogenic stresses? Cell Mol Life Sci. 74:4471–4509.
2017.PubMed/NCBI View Article : Google Scholar
|
33
|
Dong X, Hu X, Chen J, Hu D and Chen LF:
BRD4 regulates cellular senescence in gastric cancer cells via
E2F/miR-106b/p21 axis. Cell Death Dis. 9(203)2018.PubMed/NCBI View Article : Google Scholar
|
34
|
Sun K, Jia Z, Duan R, Yan Z, Jin Z, Yan L,
Li Q and Yang J: Long non-coding RNA XIST regulates miR-106b-5p/P21
axis to suppress tumor progression in renal cell carcinoma. Biochem
Biophys Res Commun. 510:416–420. 2019.PubMed/NCBI View Article : Google Scholar
|