1
|
Rogers MAM, Kim C, Banerjee T and Lee JM:
Fluctuations in the incidence of type 1 diabetes in the United
States from 2001 to 2015: A longitudinal study. BMC Medicine.
15(199)2017.PubMed/NCBI View Article : Google Scholar
|
2
|
American Diabetes Association: Diagnosis
and classification of diabetes mellitus. Diabetes Care 37 (Suppl
1): S81-S90, 2014.
|
3
|
Krochik AG, Mazza CS, Valdez SN, Stumpo
RR, Papouchado ML, Iacono RF, Cardoso Landaburu AC, Sica MP, Ozuna
B and Poskus E: Immunologic and genetic markers in
insulin-dependent diabetes mellitus (type 1) in an Argentine
population. Medicina (B Aires). 61:279–283. 2001.PubMed/NCBI
|
4
|
Sanyoura M, Philipson LH and Naylor R:
Monogenic diabetes in children and adolescents: Recognition and
treatment options. Curr Diab Rep. 18(58)2018.PubMed/NCBI View Article : Google Scholar
|
5
|
Carneiro-Sampaio M and Coutinho A:
Early-onset autoimmune disease as a manifestation of primary
immunodeficiency. Front Immunol. 6(185)2015.PubMed/NCBI View Article : Google Scholar
|
6
|
Witsch M, Kosteria I, Kordonouri O, Alonso
G, Archinkova M, Besancon S, Birkebæk NH, Bratina N, Cherubini V,
Hanas R, et al: Possibilities and challenges of a large
international benchmarking in pediatric diabetology-The SWEET
experience. Pediatr Diabetes. 17 (Suppl 23):S7–S15. 2016.PubMed/NCBI View Article : Google Scholar
|
7
|
Hameed S, Ellard S, Woodhead HJ, Neville
KA, Walker JL, Craig ME, Armstrong T, Yu L, Eisenbarth GS,
Hattersley AT and Verge CF: Persistently autoantibody negative
(PAN) type 1 diabetes mellitus in children. Pediatric Diabetes.
12:142–149. 2011.PubMed/NCBI View Article : Google Scholar
|
8
|
Pihoker C, Gilliam LK, Ellard S, Dabelea
D, Davis C, Dolan LM, Greenbaum CJ, Imperatore G, Lawrence JM,
Marcovina SM, et al: Prevalence, characteristics and clinical
diagnosis of maturity onset diabetes of the young due to mutations
in HNF1A, HNF4A, and glucokinase: Results from the SEARCH for
Diabetes in Youth. J Clin Endocrinol Metab. 98:4055–4062.
2013.PubMed/NCBI View Article : Google Scholar
|
9
|
Fu J, Wang T, Liu J, Wang X, Zhang Q, Li M
and Xiao X: Using clinical indices to distinguish MODY2 (GCK
Mutation) and MODY3 (HNF1A Mutation) from type 1 diabetes in a
young chinese population. Diabetes Ther. 10:1381–1390.
2019.PubMed/NCBI View Article : Google Scholar
|
10
|
Wędrychowicz A, Tobór E, Wilk M,
Ziółkowska-Ledwith E, Rams A, Wzorek K, Sabal B, Stelmach M and
Starzyk JB: Phenotype heterogeneity in glucokinase-maturity-onset
diabetes of the young (GCK-MODY) patients. J Clin Res Pediatr
Endocrinol. 9:246–252. 2017.PubMed/NCBI View Article : Google Scholar
|
11
|
Richards S, Aziz N, Bale S, Bick D, Das S,
Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, et al:
Standards and guidelines for the interpretation of sequence
variants: A joint consensus recommendation of the American College
of Medical Genetics and Genomics and the Association for Molecular
Pathology. Genet Med. 17:405–424. 2015.PubMed/NCBI View Article : Google Scholar
|
12
|
American Diabetes Association: Glycemic
targets: Standards of medical care in diabetes-2018. Diabetes Care
41 (Suppl 1): S55-S64, 2018.
|
13
|
Furuta H, Furuta M, Sanke T, Ekawa K,
Hanabusa T, Nishi M, Sasaki H and Nanjo K: Nonsense and missense
mutations in the human hepatocyte nuclear factor-1beta gene (TCF2)
and their relation to type 2 diabetes in Japanese. J Clin
Endocrinol Metab. 87:3859–3863. 2002.PubMed/NCBI View Article : Google Scholar
|
14
|
Wang C, Zhang R, Lu J, Jiang F, Hu C, Zhou
J, Liu F, Zhang F, Qin W, Li M, et al: Phenotypic heterogeneity in
Chinese patients with hepatocyte nuclear factor-1β mutations.
Diabetes Res Clin Pract. 95:119–124. 2012.PubMed/NCBI View Article : Google Scholar
|
15
|
Borowiec M, Antosik K, Fendler W, Deja G,
Jarosz-Chobot P, Mysliwiec M, Zmyslowska A, Malecki M, Szadkowska A
and Mlynarski W: Novel glucokinase mutations in patients with
monogenic diabetes-clinical outline of GCK-MD and potential for
founder effect in Slavic population. Clin Genet. 81:278–283.
2012.PubMed/NCBI View Article : Google Scholar
|
16
|
Michels A, Zhang L, Khadra A, Kushner JA,
Redondo MJ and Pietropaolo M: Prediction and prevention of type 1
diabetes: Update on success of prediction and struggles at
prevention. Pediatr Diabetes. 16:465–484. 2015.PubMed/NCBI View Article : Google Scholar
|
17
|
Ndebele NFM and Naidoo M: The management
of diabetic ketoacidosis at a rural regional hospital in
KwaZulu-Natal. Afr J Prim Health Care Fam Med. 10:e1–e6.
2018.PubMed/NCBI View Article : Google Scholar
|
18
|
Besser RE, Flanagan SE, Mackay DG, Temple
IK, Shepherd MH, Shields BM, Ellard S and Hattersley AT:
Prematurity and genetic testing for neonatal diabetes. Pediatrics.
138(e20153926)2016.PubMed/NCBI View Article : Google Scholar
|
19
|
Pörksen S, Laborie LB, Nielsen L, Louise
Max Andersen M, Sandal T, de Wet H, Schwarcz E, Aman J, Swift P,
Kocova M, et al: Disease progression and search for monogenic
diabetes among children with new onset type 1 diabetes negative for
ICA, GAD- and IA-2 Antibodies. BMC Endocr Disord.
10(16)2010.PubMed/NCBI View Article : Google Scholar
|
20
|
Type 2 diabetes in children and
adolescents. American Diabetes Association. Pediatrics: 105,
671-680, 2000.
|
21
|
Umpierrez GE, Woo W, Hagopian WA, Isaacs
SD, Palmer JP, Gaur LK, Nepom GT, Clark WS, Mixon PS and Kitabchi
AE: Immunogenetic analysis suggests different pathogenesis for
obese and lean African-Americans with diabetic ketoacidosis.
Diabetes Care. 22:1517–1523. 1999.PubMed/NCBI View Article : Google Scholar
|
22
|
Smiley D, Chandra P and Umpierrez GE:
Update on diagnosis, pathogenesis and management of ketosis-prone
Type 2 diabetes mellitus. Diabetes Manag (Lond). 1:589–600.
2011.PubMed/NCBI View Article : Google Scholar
|
23
|
Hager J, Hansen L, Vaisse C, Vionnet N,
Philippi A, Poller W, Velho G, Carcassi C, Contu L, Julier C, et
al: A missense mutation in the glucagon receptor gene is associated
with noninsulindependent diabetes mellitus. Nat Genet. 9:299–304.
1995.PubMed/NCBI View Article : Google Scholar
|
24
|
Hansen LH, Abrahamsen N, Hager J, Jelinek
L, Kindsvogel W, Froguel P and Nishimura E: The Gly40Ser mutation
in the human glucagon receptor gene associated with NIDDM results
in a receptor with reduced sensitivity to glucagon. Diabetes.
45:725–730. 1996.PubMed/NCBI View Article : Google Scholar
|
25
|
Deng H, Tang WL and Pan Q: Gly40Ser
mutation of glucagon receptor gene and NIDDM in Han nationality.
Hunan Yi Ke Da Xue Xue Bao. 26:291–293. 2001.PubMed/NCBI(In Chinese).
|
26
|
Bellanné-Chantelot C, Chauveau D, Gautier
JF, Dubois-Laforgue D, Clauin S, Beaufils S, Wilhelm JM, Boitard C,
Noël LH, Velho G and Timsit J: Clinical spectrum associated with
hepatocyte nuclear factor-1beta mutations. Ann Intern Med.
140:510–517. 2004.PubMed/NCBI View Article : Google Scholar
|
27
|
Murphy R, Ellard S and Hattersley AT:
Clinical implications of a molecular genetic classification of
monogenic beta-cell diabetes. Nat Clin Pract Endocrinol Metab.
4:200–213. 2008.PubMed/NCBI View Article : Google Scholar
|
28
|
Welters HJ, Senkel S, Klein-Hitpass L,
Erdmann S, Thomas H, Harries LW, Pearson ER, Bingham C, Hattersley
AT, Ryffel GU and Morgan NG: Conditional expression of hepatocyte
nuclear factor-1β, the maturity-onset diabetes of the young-5 gene
product, influences the viability and functional competence of
pancreatic β-cells. J Endocrinol. 190:171–181. 2006.PubMed/NCBI View Article : Google Scholar
|
29
|
Pearson ER, Badman MK, Lockwood CR, Clark
PM, Ellard S, Bingham C and Hattersley AT: Contrasting diabetes
phenotypes associated with hepatocyte nuclear factor-1α and-1β
mutations. Diabetes Care. 27:1102–1107. 2004.PubMed/NCBI View Article : Google Scholar
|
30
|
Gelling RW, Vuguin PM, Du XQ, Cui L, Rømer
J, Pederson RA, Leiser M, Sørensen H, Holst JJ, Fledelius C, et al:
Pancreatic β-cell overexpression of the glucagon receptor gene
results in enhanced β-cell function and mass. Am J Physiol
Endocrinol Metab. 297:695–707. 2009.PubMed/NCBI View Article : Google Scholar
|
31
|
Chiu HK, Qian K, Ogimoto K, Morton GJ,
Wisse BE, Agrawal N, McDonald TO, Schwartz MW and Dichek HL: Mice
lacking hepatic lipase are lean and protected against diet-induced
obesity and hepatic steatosis. Endocrinology. 151:993–1001.
2010.PubMed/NCBI View Article : Google Scholar
|
32
|
González-Navarro H, Nong Z, Amar MJ,
Shamburek RD, Najib-Fruchart J, Paigen BJ, Brewer HB Jr and
Santamarina-Fojo S: The ligand-binding function of hepatic lipase
modulates the development of atherosclerosis in transgenic mice. J
Biol Chem. 279:45312–45321. 2004.PubMed/NCBI View Article : Google Scholar
|