1
|
Steegers EA, von Dadelszen P, Duvekot JJ
and Pijnenborg R: Pre-eclampsia. Lancet. 376:631–644.
2010.PubMed/NCBI View Article : Google Scholar
|
2
|
Bilano VL, Ota E, Ganchimeg T, Mori R and
Souza JP: Risk factors of pre-eclampsia/eclampsia and its adverse
outcomes in low- and middle-income countries: A WHO secondary
analysis. PLoS One. 9(e91198)2014.PubMed/NCBI View Article : Google Scholar
|
3
|
Ospina-Prieto S, Chaiwangyen W, Herrmann
J, Groten T, Schleussner E, Markert UR and Morales-Prieto DM:
MicroRNA-141 is upregulated in preeclamptic placentae and regulates
trophoblast invasion and intercellular communication. Transl Res.
172:61–72. 2016.PubMed/NCBI View Article : Google Scholar
|
4
|
Lenfant C: Working group report on high
blood pressure in pregnancy. J Clin Hyper (Greenwich). 3:75–88.
2001.PubMed/NCBI
|
5
|
Wu P, Haththotuwa R, Kwok CS, Babu A,
Kotronias RA, Rushton C, Zaman A, Fryer AA, Kadam U, Chew-Graham CA
and Mamas MA: Preeclampsia and future cardiovascular health: A
systematic review and meta-analysis. Circ Cardiovasc Qual Outcomes.
10(e003497)2017.PubMed/NCBI View Article : Google Scholar
|
6
|
He P, Chen Z, Sun Q, Li Y, Gu H and Ni X:
Reduced expression of 11β-hydroxysteroid dehydrogenase type 2 in
preeclamptic placentas is associateβd with decreased PPARγ but
increased PPARα expression. Endocrinology. 155:299–309.
2014.PubMed/NCBI View Article : Google Scholar
|
7
|
Yu L, Li D, Liao QP, Yang HX, Cao B, Fu G,
Ye G, Bai Y, Wang H, Cui N, et al: High levels of activin A
detected in preeclamptic placenta induce trophoblast cell apoptosis
by promoting nodal signaling. J Clin Endocrinol Metab.
97:E1370–E1379. 2012.PubMed/NCBI View Article : Google Scholar
|
8
|
Wallace AE, Fraser R, Gurung S, Goulwara
SS, Whitley GS, Johnstone AP and Cartwright JE: Increased
angiogenic factor secretion by decidual natural killer cells from
pregnancies with high uterine artery resistance alters trophoblast
function. Hum Reprod. 29:652–660. 2014.PubMed/NCBI View Article : Google Scholar
|
9
|
Wallace AE, Whitley GS, Thilaganathan B
and Cartwright JE: Decidual natural killer cell receptor expression
is altered in pregnancies with impaired vascular remodeling and a
higher risk of pre-eclampsia. J Leukoc Biol. 97:79–86.
2015.PubMed/NCBI View Article : Google Scholar
|
10
|
Wang Y, Hao M, Sampson S and Xia J:
Elective delivery versus expectant management for pre-eclampsia: A
meta-analysis of RCTs. Arch Gynecol Obstet. 295:607–622.
2017.PubMed/NCBI View Article : Google Scholar
|
11
|
Kersten S: Physiological regulation of
lipoprotein lipase. Biochim Biophys Acta. 1841:919–933.
2014.PubMed/NCBI View Article : Google Scholar
|
12
|
Quagliarini F, Wang Y, Kozlitina J,
Grishin NV, Hyde R, Boerwinkle E, Valenzuela DM, Murphy AJ, Cohen
JC and Hobbs HH: Atypical angiopoietin-like protein that regulates
ANGPTL3. Proc Natl Acad Sci USA. 109:19751–19756. 2012.PubMed/NCBI View Article : Google Scholar
|
13
|
Morinaga J, Zhao J, Endo M, Kadomatsu T,
Miyata K, Sugizaki T, Okadome Y, Tian Z, Horiguchi H, Miyashita K,
et al: Association of circulating ANGPTL 3, 4, and 8 levels with
medical status in a population undergoing routine medical checkups:
A cross-sectional study. PLoS One. 13(e0193731)2018.PubMed/NCBI View Article : Google Scholar
|
14
|
Lee EC, Desai U, Gololobov G, Hong S, Feng
X, Yu XC, Gay J, Wilganowski N, Gao C, Du LL, et al: Identification
of a new functional domain in angiopoietin-like 3 (ANGPTL3) and
angiopoietin-like 4 (ANGPTL4) involved in binding and inhibition of
lipoprotein lipase (LPL). J Biol Chem. 284:13735–13745.
2009.PubMed/NCBI View Article : Google Scholar
|
15
|
Yoshida K, Shimizugawa T, Ono M and
Furukawa H: Angiopoietin-like protein 4 is a potent
hyperlipidemia-inducing factor in mice and inhibitor of lipoprotein
lipase. J Lipid Res. 43:1770–1772. 2002.PubMed/NCBI View Article : Google Scholar
|
16
|
Liu L, Zhuang X, Jiang M, Guan F, Fu Q and
Lin J: ANGPTL4 mediates the protective role of PPARgamma activators
in the pathogenesis of preeclampsia. Cell Death Dis.
8(e3054)2017.PubMed/NCBI View Article : Google Scholar
|
17
|
Luo M and Peng D: ANGPTL8: An important
regulator in metabolic disorders. Front Endocrinol (Lausanne).
9(169)2018.PubMed/NCBI View Article : Google Scholar
|
18
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
19
|
Brown MA, Magee LA, Kenny LC, Karumanchi
SA, McCarthy FP, Saito S, Hall DR, Warren CE, Adoyi G and Ishaku S:
International Society for the Study of Hypertension in Pregnancy
(ISSHP): The hypertensive disorders of pregnancy: ISSHP
classification, diagnosis & management recommendations for
international practice. Pregnancy Hypertens. 13:291–310.
2018.PubMed/NCBI View Article : Google Scholar
|
20
|
Chelbi ST and Vaiman D: Genetic and
epigenetic factors contribute to the onset of preeclampsia. Mol
Cell Endocrinol. 282:120–129. 2008.PubMed/NCBI View Article : Google Scholar
|
21
|
Seki H: Balance of antiangiogenic and
angiogenic factors in the context of the etiology of preeclampsia.
Acta Obstet Gynecol Scand. 93:959–964. 2014.PubMed/NCBI View Article : Google Scholar
|
22
|
Shah DA and Khalil RA: Bioactive factors
in uteroplacental and systemic circulation link placental ischemia
to generalized vascular dysfunction in hypertensive pregnancy and
preeclampsia. Biochem Pharmacol. 95:211–226. 2015.PubMed/NCBI View Article : Google Scholar
|
23
|
Makris A, Yeung KR, Lim SM, Sunderland N,
Heffernan S, Thompson JF, Iliopoulos J, Killingsworth MC, Yong J,
Xu B, et al: Placental growth factor reduces blood pressure in a
uteroplacental ischemia model of preeclampsia in nonhuman primates.
Hypertension. 67:1263–1272. 2016.PubMed/NCBI View Article : Google Scholar
|
24
|
Gutiérrez JA, Gómez I, Chiarello DI,
Salsoso R, Klein AD, Guzmán-Gutiérrez E, Toledo F and Sobrevia L:
Role of proteases in dysfunctional placental vascular remodelling
in preeclampsia. Biochim Biophys Acta Mol Basis Dis.
1866(165448)2020.PubMed/NCBI View Article : Google Scholar
|
25
|
Siddiqa A, Cirillo E, Tareen SHK, Ali A,
Kutmon M, Eijssen LMT, Ahmad J, Evelo CT and Coort SL: Biological
pathways leading from ANGPTL8 to diabetes mellitus-A co-expression
network based analysis. Front Physiol. 9(1841)2018.PubMed/NCBI View Article : Google Scholar
|
26
|
Luo M, Zhang Z, Peng Y, Wang S and Peng D:
The negative effect of ANGPTL8 on HDL-mediated cholesterol efflux
capacity. Cardiovasc Diabetol. 17(142)2018.PubMed/NCBI View Article : Google Scholar
|
27
|
Wang R, Liu W, Liu X, Liu X, Tao H, Wu D,
Zhao Y and Zou L: MicroRNA-210 regulates human trophoblast cell
line HTR-8/SVneo function by attenuating Notch1 expression:
Implications for the role of microRNA-210 in pre-eclampsia. Mol
Reprod Dev. 86:896–907. 2019.PubMed/NCBI View Article : Google Scholar
|
28
|
Wu D, Yang N, Xu Y, Wang S, Zhang Y,
Sagnelli M, Hui B, Huang Z and Sun L: lncRNA HIF1A antisense RNA 2
modulates trophoblast cell invasion and proliferation through
upregulating PHLDA1 expression. Mol Ther Nucleic Acids. 16:605–615.
2019.PubMed/NCBI View Article : Google Scholar
|
29
|
Ebegboni VJ, Dickenson JM and
Sivasubramaniam SD: Antioxidative effects of flavonoids and their
metabolites against hypoxia/reoxygenation-induced oxidative stress
in a human first trimester trophoblast cell line. Food Chem.
272:117–125. 2019.PubMed/NCBI View Article : Google Scholar
|