1
|
Sankaraneni R and Lachhwani D:
Antiepileptic drugs - a review. Pediatr Ann. 44:e36–e42.
2015.PubMed/NCBI View Article : Google Scholar
|
2
|
Ngugi AK, Bottomley C, Kleinschmidt I,
Sander JW and Newton CR: Estimation of the burden of active and
life-time epilepsy: A meta-analytic approach. Epilepsia.
51:883–890. 2010.PubMed/NCBI View Article : Google Scholar
|
3
|
Kwan P, Arzimanoglou A, Berg AT, Brodie
MJ, Allen Hauser W, Mathern G, Moshé SL, Perucca E, Wiebe S and
French J: Definition of drug resistant epilepsy: Consensus proposal
by the ad hoc Task Force of the ILAE Commission on Therapeutic
Strategies. Epilepsia. 51:1069–1077. 2010.PubMed/NCBI View Article : Google Scholar
|
4
|
Shapiro LA, Wang L and Ribak CE: Rapid
astrocyte and microglial activation following pilocarpine-induced
seizures in rats. Epilepsia. 49 (Suppl 2):33–41. 2008.PubMed/NCBI View Article : Google Scholar
|
5
|
Zhang XM and Zhu J: Kainic acid-induced
neurotoxicity: Targeting glial responses and glia-derived
cytokines. Curr Neuropharmacol. 9:388–398. 2011.PubMed/NCBI View Article : Google Scholar
|
6
|
Reddy DS and Kuruba R: Experimental models
of status epilepticus and neuronal injury for evaluation of
therapeutic interventions. Int J Mol Sci. 14:18284–18318.
2013.PubMed/NCBI View Article : Google Scholar
|
7
|
Friedman A and Dingledine R: Molecular
cascades that mediate the influence of inflammation on epilepsy.
Epilepsia. 52 (Suppl 3):33–39. 2011.PubMed/NCBI View Article : Google Scholar
|
8
|
Pernot F, Heinrich C, Barbier L,
Peinnequin A, Carpentier P, Dhote F, Baille V, Beaup C, Depaulis A
and Dorandeu F: Inflammatory changes during epileptogenesis and
spontaneous seizures in a mouse model of mesiotemporal lobe
epilepsy. Epilepsia. 52:2315–2325. 2011.PubMed/NCBI View Article : Google Scholar
|
9
|
Mazarati AM, Lewis ML and Pittman QJ:
Neurobehavioral comorbidities of epilepsy: Role of inflammation.
Epilepsia. 58 (Suppl 3):48–56. 2017.PubMed/NCBI View Article : Google Scholar
|
10
|
Choi J, Nordli DR Jr, Alden TD, DiPatri A
Jr, Laux L, Kelley K, Rosenow J, Schuele SU, Rajaram V and Koh S:
Cellular injury and neuroinflammation in children with chronic
intractable epilepsy. J Neuroinflammation. 6(38)2009.PubMed/NCBI View Article : Google Scholar
|
11
|
Vezzani A, Friedman A and Dingledine RJ:
The role of inflammation in epileptogenesis. Neuropharmacology.
69:16–24. 2013.PubMed/NCBI View Article : Google Scholar
|
12
|
Thompson C, Gary D, Mattson M, Mackenzie A
and Robertson GS: Kainic acid-induced naip expression in the
hippocampus is blocked in mice lacking TNF receptors. Brain Res Mol
Brain Res. 123:126–131. 2004.PubMed/NCBI View Article : Google Scholar
|
13
|
Eriksson C, Van Dam AM, Lucassen PJ, Bol
JG, Winblad B and Schultzberg M: Immunohistochemical localization
of interleukin-1beta, interleukin-1 receptor antagonist and
interleukin-1beta converting enzyme/caspase-1 in the rat brain
after peripheral administration of kainic acid. Neuroscience.
93:915–930. 1999.PubMed/NCBI View Article : Google Scholar
|
14
|
Chen Z, Duan RS, Concha QH, Wu Q, Mix E,
Winblad B, Ljunggren HG and Zhu J: IL-12p35 deficiency alleviates
kainic acid-induced hippocampal neurodegeneration in C57BL/6 mice.
Neurobiol Dis. 17:171–178. 2004.PubMed/NCBI View Article : Google Scholar
|
15
|
Jeon GS, Park SK, Park SW, Kim DW, Chung
CK and Cho SS: Glial expression of interleukin-18 and its receptor
after excitotoxic damage in the mouse hippocampus. Neurochem Res.
33:179–184. 2008.PubMed/NCBI View Article : Google Scholar
|
16
|
Vezzani A, Aronica E, Mazarati A and
Pittman QJ: Epilepsy and brain inflammation. Exp Neurol. 244:11–21.
2013.PubMed/NCBI View Article : Google Scholar
|
17
|
Li Y, Yao J, Han C, Yang J, Chaudhry MT,
Wang S, Liu H and Yin Y: Quercetin, Inflammation and Immunity.
Nutrients. 8(167)2016.PubMed/NCBI View Article : Google Scholar
|
18
|
Zheng J, Wu J, Chen J, Liu J, Lu Y, Huang
C, Hu G, Wang X and Zeng Y: Therapeutic effects of quercetin on
early inflammation in hypertriglyceridemia-related acute
pancreatitis and its mechanism. Pancreatology. 16:200–210.
2016.PubMed/NCBI View Article : Google Scholar
|
19
|
Dong YS, Wang JL, Feng DY, Qin HZ, Wen H,
Yin ZM, Gao GD and Li C: Protective effect of quercetin against
oxidative stress and brain edema in an experimental rat model of
subarachnoid hemorrhage. Int J Med Sci. 11:282–290. 2014.PubMed/NCBI View Article : Google Scholar
|
20
|
Nassiri-Asl M, Hajiali F, Taghiloo M,
Abbasi E, Mohseni F and Yousefi F: Comparison between the effects
of quercetin on seizure threshold in acute and chronic seizure
models. Toxicol Ind Health. 32:936–944. 2016.PubMed/NCBI View Article : Google Scholar
|
21
|
Chakraborty J, Singh R, Dutta D, Naskar A,
Rajamma U and Mohanakumar KP: Quercetin improves behavioral
deficiencies, restores astrocytes and microglia, and reduces
serotonin metabolism in 3-nitropropionic acid-induced rat model of
Huntington's Disease. CNS Neurosci Ther. 20:10–19. 2014.PubMed/NCBI View Article : Google Scholar
|
22
|
Moghbelinejad S, Alizadeh S, Mohammadi G,
Khodabandehloo F, Rashvand Z, Najafipour R and Nassiri-Asl M: The
effects of quercetin on the gene expression of the GABAA receptor
α5 subunit gene in a mouse model of kainic acid-induced seizure. J
Physiol Sci. 67:339–343. 2017.PubMed/NCBI View Article : Google Scholar
|
23
|
McGrath JC, Drummond GB, McLachlan EM,
Kilkenny C and Wainwright CL: Guidelines for reporting experiments
involving animals: The ARRIVE guidelines. Br J Pharmacol.
160:1573–1576. 2010.PubMed/NCBI View Article : Google Scholar
|
24
|
Morrison RS, Wenzel HJ, Kinoshita Y,
Robbins CA, Donehower LA and Schwartzkroin PA: Loss of the p53
tumor suppressor gene protects neurons from kainate-induced cell
death. J Neurosci. 16:1337–1345. 1996.PubMed/NCBI View Article : Google Scholar
|
25
|
Nassiri-Asl M, Moghbelinejad S, Abbasi E,
Yonesi F, Haghighi MR, Lotfizadeh M and Bazahang P: Effects of
quercetin on oxidative stress and memory retrieval in kindled rats.
Epilepsy Behav. 28:151–155. 2013.PubMed/NCBI View Article : Google Scholar
|
26
|
Nieoczym D, Socała K, Raszewski G and Wlaź
P: Effect of quercetin and rutin in some acute seizure models in
mice. Prog Neuropsychopharmacol Biol Psychiatry. 54:50–58.
2014.PubMed/NCBI View Article : Google Scholar
|
27
|
Singh T, Kaur T and Goel RK: Adjuvant
quercetin therapy for combined treatment of epilepsy and comorbid
depression. Neurochem Int. 104:27–33. 2017.PubMed/NCBI View Article : Google Scholar
|
28
|
Choi J and Koh S: Role of brain
inflammation in epileptogenesis. Yonsei Med J. 49:1–18.
2008.PubMed/NCBI View Article : Google Scholar
|
29
|
Wheless JW, Clarke DF, Arzimanoglou A and
Carpenter D: Treatment of pediatric epilepsy: European expert
opinion, 2007. Epileptic Disord. 9:353–412. 2007.PubMed/NCBI View Article : Google Scholar
|
30
|
Spagnuolo C, Moccia S and Russo GL:
Anti-inflammatory effects of flavonoids in neurodegenerative
disorders. Eur J Med Chem. 153:105–115. 2018.PubMed/NCBI View Article : Google Scholar
|
31
|
Bournival J, Plouffe M, Renaud J,
Provencher C and Martinoli MG: Quercetin and sesamin protect
dopaminergic cells from MPP+-induced neuroinflammation
in a microglial (N9)-neuronal (PC12) coculture system. Oxid Med
Cell Longev. 2012(921941)2012.PubMed/NCBI View Article : Google Scholar
|
32
|
Moreno LCGEI, Puerta E, Suárez-Santiago
JE, Santos-Magalhães NS, Ramirez MJ and Irache JM: Effect of the
oral administration of nanoencapsulated quercetin on a mouse model
of Alzheimer's disease. Int J Pharm. 517:50–57. 2017.PubMed/NCBI View Article : Google Scholar
|
33
|
Chen WW, Zhang X and Huang WJ: Role of
neuroinflammation in neurodegenerative diseases (Review). Mol Med
Rep. 13:3391–3396. 2016.PubMed/NCBI View Article : Google Scholar
|
34
|
Rahimifard M, Maqbool F, Moeini-Nodeh S,
Niaz K, Abdollahi M, Braidy N, Nabavi SM and Nabavi SF: Targeting
the TLR4 signaling pathway by polyphenols: A novel therapeutic
strategy for neuroinflammation. Ageing Res Rev. 36:11–19.
2017.PubMed/NCBI View Article : Google Scholar
|
35
|
Kang CH, Choi YH, Moon SK, Kim WJ and Kim
GY: Quercetin inhibits lipopolysaccharide-induced nitric oxide
production in BV2 microglial cells by suppressing the NF-κB pathway
and activating the Nrf2-dependent HO-1 pathway. Int
Immunopharmacol. 17:808–813. 2013.PubMed/NCBI View Article : Google Scholar
|
36
|
Miller JA, Kirkley KA, Padmanabhan R,
Liang LP, Raol YH, Patel M, Bialecki RA and Tjalkens RB: Repeated
exposure to low doses of kainic acid activates nuclear factor kappa
B (NF-κB) prior to seizure in transgenic NF-κB-EGFP reporter mice.
Neurotoxicology. 44:39–47. 2014.PubMed/NCBI View Article : Google Scholar
|
37
|
Bosco DB, Zheng J, Xu Z, Peng J, Eyo UB,
Tang K, Yan C, Huang J, Feng L, Wu G, et al: RNAseq analysis of
hippocampal microglia after kainic acid-induced seizures. Mol
Brain. 11(34)2018.PubMed/NCBI View Article : Google Scholar
|