1
|
Lane DP and Crawford LV: T antigen is
bound to a host protein in SV40-transformed cells. Nature.
278:261–263. 1979.PubMed/NCBI View
Article : Google Scholar
|
2
|
Linzer DI and Levine AJ: Characterization
of a 54K dalton cellular SV40 tumor antigen present in
SV40-transformed cells and uninfected embryonal carcinoma cells.
Cell. 17:43–52. 1979.PubMed/NCBI View Article : Google Scholar
|
3
|
Kress M, May E, Cassingena R and May P:
Simian virus 40-transformed cells express new species of proteins
precipitable by anti-simian virus 40 tumor serum. J Virol.
31:472–483. 1979.PubMed/NCBI
|
4
|
Greenblatt MS, Bennett WP, Hollstein M and
Harris CC: Mutations in the p53 tumor suppressor gene: Clues to
cancer etiology and molecular pathogenesis. Cancer Res.
54:4855–4878. 1994.PubMed/NCBI
|
5
|
Vousden KH and Lane DP: P53 in health and
disease. Nat Rev Mol Cell Biol. 8:275–283. 2007.PubMed/NCBI View
Article : Google Scholar
|
6
|
Puisieux A, Lim S, Groopman J and Ozturk
M: Selective targeting of p53 gene mutational hotspots in human
cancers by etiologically defined carcinogens. Cancer Res.
51:6185–6189. 1991.PubMed/NCBI
|
7
|
Belyi VA, Ak P, Markert E, Wang H, Hu W,
Puzio-Kuter A and Levine AJ: The origins and evolution of the p53
family of genes. Cold Spring Harb Perspect Biol.
2(a001198)2010.PubMed/NCBI View Article : Google Scholar
|
8
|
Brown CJ, Lain S, Verma CS, Fersht AR and
Lane DP: Awakening guardian angels: Drugging the p53 pathway. Nat
Rev Cancer. 9:862–873. 2009.PubMed/NCBI View
Article : Google Scholar
|
9
|
Wandall HH, Rumjantseva V, Sørensen AL,
Patel-Hett S, Josefsson EC, Bennett EP, Italiano JE Jr, Clausen H,
Hartwig JH and Hoffmeister KM: The origin and function of platelet
glycosyltransferases. Blood. 120:626–635. 2012.PubMed/NCBI View Article : Google Scholar
|
10
|
Sacchetti C and Bianchini E: Biological
activity of human bone marrow megakaryocytes; genesis, in vivo and
in vitro maturation, platelet formation, phagocytosis and
pathological character. Arch Maragliano Patol Clin. 10:431–454.
1955.PubMed/NCBI(In Italian).
|
11
|
Werner H: Megakaryocytes in the bone
marrow of the white rat. Z Mikrosk Anat Forsch. 60:269–288.
1954.PubMed/NCBI
|
12
|
De La Fuente V: Megakaryocytic reaction
localized in the bone marrow; report of a new hematologic syndrome
with observations on the origin and development of megakaryocytes
and on the derivation of platelets. Arch Intern Med (Chic).
78:387–404. 1946.PubMed/NCBI
|
13
|
Vladareanu AM, Vasilache V, Bumbea H and
Onisâi M: Platelet dysfunction in acute leukemias and
myelodysplastic syndromes. Rom J Intern Med. 49:93–96.
2011.PubMed/NCBI
|
14
|
Velculescu VE and El-Deiry WS: Biological
and clinical importance of the p53 tumor suppressor gene. Clin
Chem. 42:858–868. 1996.PubMed/NCBI
|
15
|
Horiike S, Kita-Sasai Y, Nakao M and
Taniwaki M: Configuration of the TP53 gene as an independent
prognostic parameter of myelodysplastics yndrome. Leuk Lymphoma.
44:915–922. 2003.PubMed/NCBI View Article : Google Scholar
|
16
|
Fuhrken PG, Apostolidis PA, Lindsey S,
Miller WM and Papoutsakis ET: Tumor suppressor protein p53
regulates megakaryocytic polyploidization and apoptosis. J Biol
Chem. 283:15589–15600. 2008.PubMed/NCBI View Article : Google Scholar
|
17
|
Luff SA, Kao CY and Papoutsakis ET: Role
of p53 and transcription-independent p53-induced apoptosis in
shear-stimulated megakaryocytic maturation, particle generation,
and platelet biogenesis. PLoS One. 13(e0203991)2018.PubMed/NCBI View Article : Google Scholar
|
18
|
Apostolidis PA, Woulfe DS, Chavez M,
Miller WM and Papoutsakis ET: Role of tumor suppressor p53 in
megakaryopoiesis and platelet function. Exp Hematol. 40:131–142.
2012.PubMed/NCBI View Article : Google Scholar
|
19
|
Jirouskova M, Shet AS and Johnson GJ: A
guide to murine platelet structure, function, assays, and genetic
alterations. J Thromb Haemost. 5:661–669. 2007.PubMed/NCBI View Article : Google Scholar
|
20
|
Michelson AD: Flow cytometry: A clinical
test of platelet function. Blood. 87:4925–4936. 1996.PubMed/NCBI
|
21
|
Subramaniam M, Frenette PS, Saffaripour S,
Johnson RC, Hynes RO and Wagner DD: Defects in hemostasis in
P-selectin-deficient mice. Blood. 87:1238–1242. 1996.PubMed/NCBI
|
22
|
Liu Y, Jennings NL, Dart AM and Du XJ:
Standardizing a simpler, more sensitive and accurate tail bleeding
assay in mice. World J Exp Med. 2:30–36. 2012.PubMed/NCBI View Article : Google Scholar
|
23
|
Kafert S, Krauter J, Ganser A and Eder M:
Differential quantitation of alternatively spliced messenger RNAs
using isoform-specific real-time RT-PCR. Anal Biochem. 269:210–213.
1999.PubMed/NCBI View Article : Google Scholar
|
24
|
Kunicka JE, Fischer G, Murphy J and
Zelmanovic D: Improved platelet counting using two-dimensional
laser light scatter. Am J Clin Pathol. 114:283–289. 2000.PubMed/NCBI View Article : Google Scholar
|
25
|
Kunz D, Höffkes H, Kunz WS and Gressner
AM: Standardized flow cytometric method for the accurate
determination of platelet counts in patients with severe
thrombocytopenia. Cytometry. 42:284–289. 2000.PubMed/NCBI View Article : Google Scholar
|
26
|
Schmitz G, Rothe G, Ruf A, Barlage S,
Tschöpe D, Clemetson KJ, Goodall AH, Michelson AD, Nurden AT and
Shankey TV: European Working group on clinical cell analysis:
Consensus protocol for the flow cytometric characterisation of
platelet function. Thromb Haemost. 79:885–896. 1998.PubMed/NCBI
|
27
|
Baccini V, Roy L, Vitrat N, Chagraoui H,
Sabri S, Le Couedic JP, Debili N, Wendling F and Vainchenker W:
Role of p21(Cip1/Waf1) in cell-cycle exit of endomitotic
megakaryocytes. Blood. 98:3274–3282. 2001.PubMed/NCBI View Article : Google Scholar
|
28
|
TeKippe M, Harrison DE and Chen J:
Expansion of hematopoietic stem cell phenotype and activity in
Trp53-null mice. Exp Hematol. 31:521–527. 2003.PubMed/NCBI View Article : Google Scholar
|
29
|
Su W, Hopkins S, Nesser NK, Sopher B,
Silvestroni A, Ammanuel S, Jayadev S, Möller T, Weinstein J and
Garden GA: The p53 transcription factor modulates microglia
behavior through microRNA-dependent regulation of c-Maf. J Immunol.
192:358–366. 2014.PubMed/NCBI View Article : Google Scholar
|
30
|
Matas D, Milyavsky M, Shats I, Nissim L,
Goldfinger N and Rotter V: P53 is a regulator of macrophage
differentiation. Cell Death Differ. 11:458–467. 2004.PubMed/NCBI View Article : Google Scholar
|
31
|
Suraneni PK and Crispino JD: The hippo-p53
pathway in megakaryopoiesis. Haematologica. 101:1446–1448.
2016.PubMed/NCBI View Article : Google Scholar
|
32
|
Gibbins JM: Platelet adhesion signalling
and the regulation of thrombus formation. J Cell Sci.
117:3415–3425. 2004.PubMed/NCBI View Article : Google Scholar
|
33
|
Fantauzzo KA and Soriano P: PI3K-mediated
PDGFRα signaling regulates survival and proliferation in skeletal
development through p53-dependent intracellular pathways. Genes
Dev. 28:1005–1017. 2014.PubMed/NCBI View Article : Google Scholar
|
34
|
Guidetti GF, Canobbio I and Torti M:
PI3K/Akt in platelet integrin signaling and implications in
thrombosis. Adv Biol Regul. 59:36–52. 2015.PubMed/NCBI View Article : Google Scholar
|
35
|
Lefrancais E, Ortiz-Muñoz G, Caudrillier
A, Mallavia B, Liu F, Sayah DM, Thornton EE, Headley MB, David T,
Coughlin SR, et al: The lung is a site of platelet biogenesis and a
reservoir for haematopoietic progenitors. Nature. 544:105–109.
2017.PubMed/NCBI View Article : Google Scholar
|
36
|
Cheng Z, Gao W, Fan X, Chen X, Mei H, Liu
J, Luo X and Hu Y: Extracellular signal-regulated kinase 5
associates with casein kinase II to regulate GPIb-IX-mediated
platelet activation via the PTEN/PI3K/Akt pathway. J Thromb
Haemost. 15:1679–1688. 2017.PubMed/NCBI View Article : Google Scholar
|