1
|
Hampel H, Mesulam MM, Cuello AC, Farlow
MR, Giacobini E, Grossberg GT, Khachaturian AS, Vergallo A, Cavedo
E, Snyder PJ, et al: The cholinergic system in the pathophysiology
and treatment of Alzheimer's disease. Brain. 141:1917–1933.
2018.PubMed/NCBI View Article : Google Scholar
|
2
|
Kelly SC, He B, Perez SE, Ginsberg SD,
Mufson EJ and Counts SE: Locus coeruleus cellular and molecular
pathology during the progression of Alzheimer's disease. Acta
Neuropathol Commun. 5(8)2017.PubMed/NCBI View Article : Google Scholar
|
3
|
Reitz C and Mayeux R: Alzheimer disease:
Epidemiology, diagnostic criteria, risk factors and biomarkers.
Biochem Pharmacol. 88:640–651. 2014.PubMed/NCBI View Article : Google Scholar
|
4
|
Alzheimer's Disease International: World
Alzheimer Report. Alzheimer's Disease International, London,
2015.
|
5
|
Vijayan M and Reddy PH: Stroke, vascular
dementia, and Alzheimer's disease: Molecular links. J Alzheimers
Dis. 54:427–443. 2016.PubMed/NCBI View Article : Google Scholar
|
6
|
Morelli A, Sarchielli E, Guarnieri G,
Coppi E, Pantano D, Comeglio P, Nardiello P, Pugliese AM, Ballerini
L, Matucci R, et al: Young human cholinergic neurons respond to
physiological regulators and improve cognitive symptoms in an
animal model of Alzheimer's disease. Front Cell Neurosci.
11(339)2017.PubMed/NCBI View Article : Google Scholar
|
7
|
Kim SH, Kandiah N, Hsu JL, Suthisisang C,
Udommongkol C and Dash A: Beyond symptomatic effects: Potential of
donepezil as a neuroprotective agent and disease modifier in
Alzheimer's disease. Br J Pharmacol. 174:4224–4232. 2017.PubMed/NCBI View Article : Google Scholar
|
8
|
Fagan AM, Xiong C, Jasielec MS, Bateman
RJ, Goate AM, Benzinger TL, Ghetti B, Martins RN, Masters CL,
Mayeux R, et al: Dominantly Inherited Alzheimer Network.
Longitudinal change in CSF biomarkers in autosomal-dominant
Alzheimer's disease. Sci Transl Med. 6(226)2014.PubMed/NCBI View Article : Google Scholar
|
9
|
Jack CR Jr and Holtzman DM: Biomarker
modeling of Alzheimer's disease. Neuron. 80:1347–1358.
2013.PubMed/NCBI View Article : Google Scholar
|
10
|
Absalon S, Kochanek DM, Raghavan V and
Krichevsky AM: MiR-26b, upregulated in Alzheimer's disease,
activates cell cycle entry, tau-phosphorylation, and apoptosis in
postmitotic neurons. J Neurosci. 33:14645–14659. 2013.PubMed/NCBI View Article : Google Scholar
|
11
|
Hébert SS, Wang WX, Zhu Q and Nelson PT: A
study of small RNAs from cerebral neocortex of pathology-verified
Alzheimer's disease, dementia with lewy bodies, hippocampal
sclerosis, frontotemporal lobar dementia, and non-demented human
controls. J Alzheimers Dis. 35:335–348. 2013.PubMed/NCBI View Article : Google Scholar
|
12
|
Lugli G, Cohen AM, Bennett DA, Shah RC,
Fields CJ, Hernandez AG and Smalheiser NR: Plasma exosomal miRNAs
in persons with and without Alzheimer disease: altered expression
and prospects for biomarkers. PLoS One. 10(e0139233)2015.PubMed/NCBI View Article : Google Scholar
|
13
|
Kumar P, Dezso Z, MacKenzie C, Oestreicher
J, Agoulnik S, Byrne M, Bernier F, Yanagimachi M, Aoshima K and Oda
Y: Circulating miRNA biomarkers for Alzheimer's disease. PLoS One.
8(e69807)2013.PubMed/NCBI View Article : Google Scholar
|
14
|
Long JM, Ray B and Lahiri DK: MicroRNA-153
physiologically inhibits expression of amyloid-β precursor protein
in cultured human fetal brain cells and is dysregulated in a subset
of Alzheimer disease patients. J Biol Chem. 287:31298–31310.
2012.PubMed/NCBI View Article : Google Scholar
|
15
|
Almeida MI, Nicoloso MS, Zeng L, Ivan C,
Spizzo R, Gafà R, Xiao L, Zhang X, Vannini I, Fanini F, et al:
Strand-specific miR-28-5p and miR-28-3p have distinct effects in
colorectal cancer cells. Gastroenterology. 142:886–896.e9.
2012.PubMed/NCBI View Article : Google Scholar
|
16
|
Lv Y, Yang H, Ma X and Wu G:
Strand-specific miR-28-3p and miR-28-5p have differential effects
on nasopharyngeal cancer cells proliferation, apoptosis, migration
and invasion. Cancer Cell Int. 19(187)2019.PubMed/NCBI View Article : Google Scholar
|
17
|
Hong H, Li Y and Su B: Identification of
circulating miR-125b as a potential biomarker of Alzheimer's
disease in APP/PS1 transgenic mouse. J Alzheimers Dis.
59:1449–1458. 2017.PubMed/NCBI View Article : Google Scholar
|
18
|
Paltsev MA, Zuev VA, Kozhevnikova EO,
Linkova NS, Kvetnaia TV, Polyakova VO and Kvetnoy IM: Molecular
markers of Alzheimer disease early diagnostic: Investigation
perspectives of peripheral tissues. Adv Gerontol. 30:809–817.
2017.(In Russian). PubMed/NCBI
|
19
|
Ma Y, Zhang Z, Chen R, Shi R, Zeng P, Chen
R, Leng Y and Chen AF: NRP1 regulates HMGB1 in vascular endothelial
cells under high homocysteine condition. Am J Physiol Heart Circ
Physiol. 316:H1039–H1046. 2019.PubMed/NCBI View Article : Google Scholar
|
20
|
Matías-Guiu JA, Valles-Salgado M, Rognoni
T, Hamre-Gil F, Moreno-Ramos T and Matías-Guiu J: Comparative
diagnostic accuracy of the ACE-III, MIS, MMSE, MoCA, and RUDAS for
screening of Alzheimer disease. Dement Geriatr Cogn Disord.
43:237–246. 2017.PubMed/NCBI View Article : Google Scholar
|
21
|
Zhou G, Liu S, Yu X, Zhao X, Ma L and Shan
P: High prevalence of sleep disorders and behavioral and
psychological symptoms of dementia in late-onset Alzheimer disease:
A study in Eastern China. Medicine (Baltimore).
98(e18405)2019.PubMed/NCBI View Article : Google Scholar
|
22
|
Milani P, Vincent Rajkumar S, Merlini G,
Kumar S, Gertz MA, Palladini G, Lacy MQ, Buadi FK, Hayman SR, Leung
N, et al: N-terminal fragment of the type-B natriuretic peptide
(NT-proBNP) contributes to a simple new frailty score in patients
with newly diagnosed multiple myeloma. Am J Hematol. 91:1129–1134.
2016.PubMed/NCBI View Article : Google Scholar
|
23
|
Cacabelos R, Torrellas C and López-Muñoz
F: Epigenomics of Alzheimer's disease. J Exp Clin Med. 6:75–82.
2014.PubMed/NCBI View Article : Google Scholar
|
24
|
Long JM, Maloney B, Rogers JT and Lahiri
DK: Novel upregulation of amyloid-β precursor protein (APP) by
microRNA-346 via targeting of APP mRNA 5'-untranslated region:
Implications in Alzheimer's disease. Mol Psychiatry. 24:345–363.
2019.PubMed/NCBI View Article : Google Scholar
|
25
|
Cavedo E, Grothe MJ, Colliot O, Lista S,
Chupin M, Dormont D, Houot M, Lehéricy S, Teipel S, Dubois B, et
al: Hippocampus Study Group: Reduced basal forebrain atrophy
progression in a randomized Donepezil trial in prodromal
Alzheimer's disease. Sci Rep. 7(11706)2017.PubMed/NCBI View Article : Google Scholar
|
26
|
Li Q, He S, Chen Y, Feng F, Qu W and Sun
H: Donepezil-based multi-functional cholinesterase inhibitors for
treatment of Alzheimer's disease. Eur J Med Chem. 158:463–477.
2018.PubMed/NCBI View Article : Google Scholar
|
27
|
Zhao Y, Pogue AI and Lukiw WJ: MicroRNA
(miRNA) signaling in the human CNS in sporadic Alzheimer's disease
(AD) - novel and unique pathological features. Int J Mol Sci.
16:30105–30116. 2015.PubMed/NCBI View Article : Google Scholar
|
28
|
Hohjoh H and Fukushima T: Expression
profile analysis of microRNA (miRNA) in mouse central nervous
system using a new miRNA detection system that examines
hybridization signals at every step of washing. Gene. 391:39–44.
2007.PubMed/NCBI View Article : Google Scholar
|
29
|
Schratt GM, Tuebing F, Nigh EA, Kane CG,
Sabatini ME, Kiebler M and Greenberg ME: A brain-specific microRNA
regulates dendritic spine development. Nature. 439:283–289.
2006.PubMed/NCBI View Article : Google Scholar
|
30
|
Luo L: Actin cytoskeleton regulation in
neuronal morphogenesis and structural plasticity. Annu Rev Cell Dev
Biol. 18:601–635. 2002.PubMed/NCBI View Article : Google Scholar
|
31
|
Satoh J: MicroRNAs and their therapeutic
potential for human diseases: Aberrant microRNA expression in
Alzheimer's disease brains. J Pharmacol Sci. 114:269–275.
2010.PubMed/NCBI View Article : Google Scholar
|
32
|
Blondal T, Jensby Nielsen S, Baker A,
Andreasen D, Mouritzen P, Wrang Teilum M and Dahlsveen IK:
Assessing sample and miRNA profile quality in serum and plasma or
other biofluids. Methods. 59:S1–S6. 2013.PubMed/NCBI View Article : Google Scholar
|
33
|
Jia LH and Liu YN: Downregulated serum
miR-223 serves as biomarker in Alzheimer's disease. Cell Biochem
Funct. 34:233–237. 2016.
|
34
|
Brase JC, Wuttig D, Kuner R and Sültmann
H: Serum microRNAs as non-invasive biomarkers for cancer. Mol
Cancer. 9(306)2010.PubMed/NCBI View Article : Google Scholar
|
35
|
Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K,
Guo J, Zhang Y, Chen J, Guo X, et al: Characterization of microRNAs
in serum: A novel class of biomarkers for diagnosis of cancer and
other diseases. Cell Res. 18:997–1006. 2008.PubMed/NCBI View Article : Google Scholar
|
36
|
Bai XT and Nicot C: miR-28-3p is a
cellular restriction factor that inhibits human T cell leukemia
virus, type 1 (HTLV-1) replication and virus infection. J Biol
Chem. 290:5381–5390. 2015.PubMed/NCBI View Article : Google Scholar
|
37
|
Pospisilova S, Pazourkova E, Horinek A,
Brisuda A, Svobodova I, Soukup V, Hrbacek J, Capoun O, Hanus T,
Mares J, et al: MicroRNAs in urine supernatant as potential
non-invasive markers for bladder cancer detection. Neoplasma.
63:799–808. 2016.PubMed/NCBI View Article : Google Scholar
|
38
|
Argyropoulos C, Wang K, Bernardo J, Ellis
D, Orchard T, Galas D and Johnson JP: Urinary microRNA profiling
predicts the development of microalbumin uria in patients with type
1 diabetes. J Clin Med. 4:1498–1517. 2015.PubMed/NCBI View Article : Google Scholar
|
39
|
Prats-Puig A, Ortega FJ, Mercader JM,
Moreno-Navarrete JM, Moreno M, Bonet N, Ricart W, López-Bermejo A
and Fernández-Real JM: Changes in circulating microRNAs are
associated with childhood obesity. J Clin Endocrinol Metab.
98:E1655–E1660. 2013.PubMed/NCBI View Article : Google Scholar
|
40
|
Satoh J, Kino Y and Niida S: MicroRNA-Seq
data analysis pipeline to identify blood biomarkers for Alzheimer's
disease from public data. Biomark Insights. 10:21–31.
2015.PubMed/NCBI View Article : Google Scholar
|
41
|
Burgos K, Malenica I, Metpally R,
Courtright A, Rakela B, Beach T, Shill H, Adler C, Sabbagh M, Villa
S, et al: Profiles of extracellular miRNA in cerebrospinal fluid
and serum from patients with Alzheimer's and Parkinson's diseases
correlate with disease status and features of pathology. PLoS One.
9(e94839)2014.PubMed/NCBI View Article : Google Scholar
|
42
|
Wang CN, Wang YJ, Wang H, Song L, Chen Y,
Wang JL, Ye Y and Jiang B: The anti-dementia effects of donepezil
involve miR-206-3p in the hippocampus and cortex. Biol Pharm Bull.
40:465–472. 2017.PubMed/NCBI View Article : Google Scholar
|
43
|
Rosignolo F, Sponziello M, Giacomelli L,
Russo D, Pecce V, Biffoni M, Bellantone R, Lombardi CP, Lamartina
L, Grani G, et al: Identification of thyroid-associated serum
microRNA profiles and their potential use in thyroid cancer
follow-up. J Endocr Soc. 1:3–13. 2017.PubMed/NCBI View Article : Google Scholar
|
44
|
Kamath AF, Chauhan AK, Kisucka J, Dole VS,
Loscalzo J, Handy DE and Wagner DD: Elevated levels of homocysteine
compromise blood-brain barrier integrity in mice. Blood.
107:591–593. 2006.PubMed/NCBI View Article : Google Scholar
|
45
|
Minagawa H, Watanabe A, Akatsu H, Adachi
K, Ohtsuka C, Terayama Y, Hosono T, Takahashi S, Wakita H, Jung CG,
et al: Homocysteine, another risk factor for Alzheimer disease,
impairs apolipoprotein E3 function. J Biol Chem. 285:38382–38388.
2010.PubMed/NCBI View Article : Google Scholar
|
46
|
Gu C, Shen T, An H, Yuan C, Zhou J, Ye Q,
Liu T, Wang X and Zhang T: Combined therapy of Di-Huang-Yi-Zhi with
Donepezil in patients with Parkinson's disease dementia. Neurosci
Lett. 606:13–17. 2015.PubMed/NCBI View Article : Google Scholar
|
47
|
Liu X, Zhang J, Xia M, Liu J and Jiang S:
Effect of donepezil on Hcy level in serum of Alzheimer's disease
patients and correlation analysis of Hcy and dyssomnia. Exp Ther
Med. 17:1395–1399. 2019.PubMed/NCBI View Article : Google Scholar
|
48
|
Zhou X, Wen W, Shan X, Qian J, Li H, Jiang
T, Wang W, Cheng W, Wang F, Qi L, et al: MiR-28-3p as a potential
plasma marker in diagnosis of pulmonary embolism. Thromb Res.
138:91–95. 2016.PubMed/NCBI View Article : Google Scholar
|
49
|
Yu J, Xu Q, Zhang X and Zhu M: Circulating
microRNA signatures serve as potential diagnostic biomarkers for
Helicobacter pylori infection. J Cell Biochem.
120:1735–1741. 2018.PubMed/NCBI View Article : Google Scholar
|