Genetics of schizophrenia (Review)
- Authors:
- Simona Corina Trifu
- Bianca Kohn
- Andrei Vlasie
- Bogdan-Eduard Patrichi
-
Affiliations: Department of Neurosciences, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania, Department of Psychiatry, ‘Prof. Dr. Alexandru Obregia’ Clinical Hospital of Psychiatry, 041914 Bucharest, Romania, Department of Psychiatry and Psychology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania - Published online on: July 7, 2020 https://doi.org/10.3892/etm.2020.8973
- Pages: 3462-3468
-
Copyright: © Trifu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
American Psychiatric Association: Schizophrenia Spectrum and Other Psychotic Disorders In Diagnostic and statistical manual of mental disorders. 5th edition. Washington, DC, 2013. | |
Trifu S, Delcuescu C and Boer CM: Psychosomatics and psychical tension (clinical research). Procedia Soc Behav Sci. 33:128–132. 2012. | |
Lieberman JA, Perkins D, Belger A, Chakos M, Jarskog F, Boteva K and Gilmore J: The early stages of schizophrenia: Speculations on pathogenesis, pathophysiology, and therapeutic approaches. Biol Psychiatry. 50:884–897. 2001.PubMed/NCBI View Article : Google Scholar | |
Perkins DO, Gu H, Boteva K and Lieberman JA: Relationship between duration of untreated psychosis and outcome in first-episode schizophrenia: A critical review and meta-analysis. Am J Psychiatry. 162:1785–1804. 2005.PubMed/NCBI View Article : Google Scholar | |
Saha S, Chant D, Welham J and McGrath J: A systematic review of the prevalence of schizophrenia. PLoS Med. 2(e141)2005.PubMed/NCBI View Article : Google Scholar | |
Sullivan PF, Kendler KS and Neale MC: Schizophrenia as a complex trait: Evidence from a meta-analysis of twin studies. Arch Gen Psychiatry. 60:1187–1192. 2003.PubMed/NCBI View Article : Google Scholar | |
Trifu S: Dissociative Identity Disorder Psychotic functioning and impairment of growing-up processes. J Educ Sci Psychol. 9:102–108. 2019. | |
Karayiorgou M and Gogos JA: A turning point in schizophrenia genetics. Neuron. 19:967–979. 1997.PubMed/NCBI View Article : Google Scholar | |
Kirov G, Pocklington AJ, Holmans P, Ivanov D, Ikeda M, Ruderfer D, Moran J, Chambert K, Toncheva D, Georgieva L, et al: De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia. Mol Psychiatry. 17:142–153. 2012.PubMed/NCBI View Article : Google Scholar | |
Ripke S, O'Dushlaine C, Chambert K, Moran JL, Kähler AK, Akterin S, Bergen SE, Collins AL, Crowley JJ, Fromer M, et al: Multicenter Genetic Studies of Schizophrenia Consortium; Psychosis endophenotypes international consortium; Wellcome trust case control consortium 2: Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat Genet. 45:1150–1159. 2013.PubMed/NCBI View Article : Google Scholar | |
Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium. Genome-wide association study identifies five new schizophrenia loci. Nat Genet. 43:969–976. 2011.PubMed/NCBI View Article : Google Scholar | |
Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, Cooper GM, Nord AS, Kusenda M, Malhotra D, Bhandari A, et al: Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science. 320:539–543. 2008.PubMed/NCBI View Article : Google Scholar | |
Gulsuner S, Walsh T, Watts AC, Lee MK, Thornton AM, Casadei S, Rippey C, Shahin H, Nimgaonkar VL, Go RC, et al: Consortium on the Genetics of Schizophrenia (COGS); PAARTNERS Study Group: Spatial and temporal mapping of de novo mutations in schizophrenia to a fetal prefrontal cortical network. Cell. 154:518–529. 2013.PubMed/NCBI View Article : Google Scholar | |
Trifu S, Vladuti A and Popescu A: Neuroendocrine aspects of pregnancy and postpartum depression. Acta Endocrinol (Bucur). 15:410–415. 2019.PubMed/NCBI View Article : Google Scholar | |
Ng MY, Levinson DF, Faraone SV, Suarez BK, DeLisi LE, Arinami T, Riley B, Paunio T, Pulver AE, Irmansyah, et al: Meta-analysis of 32 genome-wide linkage studies of schizophrenia. Mol Psychiatry. 14:774–785. 2009.PubMed/NCBI View Article : Google Scholar | |
Shih RA, Belmonte PL and Zandi PP: A review of the evidence from family, twin and adoption studies for a genetic contribution to adult psychiatric disorders. Int Rev Psychiatry. 16:260–283. 2004.PubMed/NCBI View Article : Google Scholar | |
Rujescu D: Search for risk genes in schizophrenia. Nervenarzt. 88:751–754. 2017.PubMed/NCBI View Article : Google Scholar | |
Davis JO and Phelps JA: Twins with schizophrenia: Genes or germs? Schizophr Bull. 21:13–18. 1995.PubMed/NCBI View Article : Google Scholar | |
Waller NG, Kojetin BA, Bouchard TJ Jr, Lykken DT and Tellegen A: Genetic and environmental influences on religious interests, attitudes, and values: A study of twins reared apart and together. Psychol Sci. 1:138–142. 1990. | |
Torrey EF, Bowler AE, Taylor EH and Gottesman II: Schizophrenia and Manic Depression Disorder: The Biological Roots of Mental Illness as Revealed by the Landmark Study of Identical Twins. Basic Books, New York, NY, p274, 1994. | |
Bracha HS, Torrey EF, Gottesman II, Bigelow LB and Cuniff C: Second trimester markers of fetal size in schizophrenia: A study of monozygotic twins. Am J Hum Genet. 28:433–441. 1976. | |
Pulver AE, Liang KY, Brown CH, Wolyniec P, McGrath J, Adler L, Tam D, Carpenter WT Jr and Childs B: Risk factors in schizophrenia. Season of birth, gender, and familial risk. Br J Psychiatry. 160:65–71. 1992.PubMed/NCBI View Article : Google Scholar | |
Bulmer M (ed): The Biology of Twinning in Man. Clarendon Press, Oxford, p205, 1970. | |
Macgillivray I, Nylander P and Corney G (eds): Mythology and customs associated with twins. In: Human Multiple Reproduction. WB Saunders Company, London, 1975. | |
Springer SP and Deutsch G: Left Brain, Right Brain. Freeman & Company, San Francisco, CA, p243, 1981. | |
Greenwood TA, Swerdlow NR, Gur RE, Cadenhead KS, Calkins ME, Dobie DJ, Freedman R, Green MF, Gur RC, Lazzeroni LC, et al: Genome-wide linkage analyses of 12 endophenotypes for schizophrenia from the Consortium on the Genetics of Schizophrenia. Am J Psychiatry. 170:521–532. 2013.PubMed/NCBI View Article : Google Scholar | |
Vieland VJ, Walters KA, Lehner T, Azaro M, Tobin K, Huang Y and Brzustowicz LM: Revisiting schizophrenia linkage data in the NIMH Repository: Reanalysis of regularized data across multiple studies. Am J Psychiatry. 171:350–359. 2014.PubMed/NCBI View Article : Google Scholar | |
Karayiorgou M and Gogos JA: Schizophrenia genetics: Uncovering positional candidate genes. Eur J Hum Genet. 14:512–519. 2006.PubMed/NCBI View Article : Google Scholar | |
Levinson DF, Holmans P, Straub RE, Owen MJ, Wildenauer DB, Gejman PV, Pulver AE, Laurent C, Kendler KS, Walsh D, et al: Multicenter linkage study of schizophrenia candidate regions on chromosomes 5q, 6q, 10p, and 13q: Schizophrenia linkage collaborative group III. Am J Hum Genet. 67:652–663. 2000.PubMed/NCBI View Article : Google Scholar | |
Campbell CD, Ogburn EL, Lunetta KL, Lyon HN, Freedman ML, Groop LC, Altshuler D, Ardlie KG and Hirschhorn JN: Demonstrating stratification in a European American population. Nat Genet. 37:868–872. 2005.PubMed/NCBI View Article : Google Scholar | |
Liu H, Heath SC, Sobin C, Roos JL, Galke BL, Blundell ML, Lenane M, Robertson B, Wijsman EM, Rapoport JL, et al: Genetic variation at the 22q11 PRODH2/DGCR6 locus presents an unusual pattern and increases susceptibility to schizophrenia. Proc Natl Acad Sci USA. 99:3717–3722. 2002.PubMed/NCBI View Article : Google Scholar | |
Renick SE, Kleven DT, Chan J, Stenius K, Milner TA, Pickel VM and Fremeau RT Jr: The mammalian brain high-affinity L-proline transporter is enriched preferentially in synaptic vesicles in a subpopulation of excitatory nerve terminals in rat forebrain. J Neurosci. 19:21–33. 1999.PubMed/NCBI View Article : Google Scholar | |
Trifu S: Neuroendocrine insights into burnout syndrome. Acta Endocrinol (Bucur). 15:404–405. 2019.PubMed/NCBI View Article : Google Scholar | |
Liu H, Abecasis GR, Heath SC, Knowles A, Demars S, Chen YJ, Roos JL, Rapoport JL, Gogos JA and Karayiorgou M: Genetic variation in the 22q11 locus and susceptibility to schizophrenia. Proc Natl Acad Sci USA. 99:16859–16864. 2002.PubMed/NCBI View Article : Google Scholar | |
Li T, Ma X, Sham PC, Sun X, Hu X, Wang Q, Meng H, Deng W, Liu X, Murray RM, et al: Evidence for association between novel polymorphisms in the PRODH gene and schizophrenia in a Chinese population. Am J Med Genet B Neuropsychiatr Genet. 129B:13–15. 2004.PubMed/NCBI View Article : Google Scholar | |
Fallin MD, Lasseter VK, Avramopoulos D, Nicodemus KK, Wolyniec PS, McGrath JA, Steel G, Nestadt G, Liang KY, Huganir RL, et al: Bipolar I disorder and schizophrenia: A 440-single-nucleotide polymorphism screen of 64 candidate genes among Ashkenazi Jewish case-parent trios. Am J Hum Genet. 77:918–936. 2005.PubMed/NCBI View Article : Google Scholar | |
Williams HJ, Williams N, Spurlock G, Norton N, Ivanov D, McCreadie RG, Preece A, Sharkey V, Jones S, Zammit S, et al: Association between PRODH and schizophrenia is not confirmed. Mol Psychiatry. 8:644–645. 2003.PubMed/NCBI View Article : Google Scholar | |
Ghasemvand F, Omidinia E, Salehi Z and Rahmanzadeh S: Relationship between polymorphisms in the proline dehydrogenase gene and schizophrenia risk. Genet Mol Res. 14:11681–11691. 2015.PubMed/NCBI View Article : Google Scholar | |
Gogos JA, Santha M, Takacs Z, Beck KD, Luine V, Lucas LR, Nadler JV and Karayiorgou M: The gene encoding proline dehydrogenase modulates sensorimotor gating in mice. Nat Genet. 21:434–439. 1999.PubMed/NCBI View Article : Google Scholar | |
Paterlini M, Zakharenko SS, Lai WS, Qin J, Zhang H, Mukai J, Westphal KG, Olivier B, Sulzer D, Pavlidis P, et al: Transcriptional and behavioral interaction between 22q11.2 orthologs modulates schizophrenia-related phenotypes in mice. Nat Neurosci. 8:1586–1594. 2005.PubMed/NCBI View Article : Google Scholar | |
Mukai J, Liu H, Burt RA, Swor DE, Lai WS, Karayiorgou M and Gogos JA: Evidence that the gene encoding ZDHHC8 contributes to the risk of schizophrenia. Nat Genet. 36:725–731. 2004.PubMed/NCBI View Article : Google Scholar | |
Shifman S, Bronstein M, Sternfeld M, Pisanté-Shalom A, Lev-Lehman E, Weizman A, Reznik I, Spivak B, Grisaru N, Karp L, et al: A highly significant association between a COMT haplotype and schizophrenia. Am J Hum Genet. 71:1296–1302. 2002.PubMed/NCBI View Article : Google Scholar | |
Tsai SJ, Hong CJ, Hou SJ and Yen FC: Lack of association of catechol-O-methyltransferase gene Val108/158Met polymorphism with schizophrenia: A family-based association study in a Chinese population. Mol Psychiatry. 11:2–3. 2006.PubMed/NCBI View Article : Google Scholar | |
Egan MF, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM, Straub RE, Goldman D and Weinberger DR: Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci USA. 98:6917–6922. 2001.PubMed/NCBI View Article : Google Scholar | |
Ho BC, Wassink TH, O'Leary DS, Sheffield VC and Andreasen NC: Catechol-O-methyl transferase Val158Met gene polymorphism in schizophrenia: Working memory, frontal lobe MRI morphology and frontal cerebral blood flow. Mol Psychiatry. 10: 229:287–298. 2005.PubMed/NCBI View Article : Google Scholar | |
Williams HJ, Owen MJ and O'Donovan MC: Is COMT a susceptibility gene for schizophrenia? Schizophr Bull. 33:635–641. 2007.PubMed/NCBI View Article : Google Scholar | |
Gothelf D, Eliez S, Thompson T, Hinard C, Penniman L, Feinstein C, Kwon H, Jin S, Jo B, Antonarakis SE, et al: COMT genotype predicts longitudinal cognitive decline and psychosis in 22q11.2 deletion syndrome. Nat Neurosci. 8:1500–1502. 2005.PubMed/NCBI View Article : Google Scholar | |
Benson MA, Newey SE, Martin-Rendon E, Hawkes R and Blake DJ: Dysbindin, a novel coiled-coil-containing protein that interacts with the dystrobrevins in muscle and brain. J Biol Chem. 276:24232–24241. 2001.PubMed/NCBI View Article : Google Scholar | |
Li W, Zhang Q, Oiso N, Novak EK, Gautam R, O'Brien EP, Tinsley CL, Blake DJ, Spritz RA, Copeland NG, et al: Hermansky-Pudlak syndrome type 7 (HPS-7) results from mutant dysbindin, a member of the biogenesis of lysosome-related organelles complex 1 (BLOC-1). Nat Genet. 35:84–89. 2003.PubMed/NCBI View Article : Google Scholar | |
Talbot K, Eidem WL, Tinsley CL, Benson MA, Thompson EW, Smith RJ, Hahn CG, Siegel SJ, Trojanowski JQ, Gur RE, et al: Dysbindin-1 is reduced in intrinsic, glutamatergic terminals of the hippocampal formation in schizophrenia. J Clin Invest. 113:1353–1363. 2004.PubMed/NCBI View Article : Google Scholar | |
Weickert CS, Straub RE, McClintock BW, Matsumoto M, Hashimoto R, Hyde TM, Herman MM, Weinberger DR and Kleinman JE: Human dysbindin (DTNBP1) gene expression in normal brain and in schizophrenic prefrontal cortex and midbrain. Arch Gen Psychiatry. 61:544–555. 2004.PubMed/NCBI View Article : Google Scholar | |
Li T, Stefansson H, Gudfinnsson E, Cai G, Liu X, Murray RM, Steinthorsdottir V, Januel D, Gudnadottir VG, Petursson H, et al: Identification of a novel neuregulin 1 at-risk haplotype in Han schizophrenia Chinese patients, but no association with the Icelandic/Scottish risk haplotype. Mol Psychiatry. 9:698–704. 2004.PubMed/NCBI View Article : Google Scholar | |
Zhao X, Shi Y, Tang J, Tang R, Yu L, Gu N, Feng G, Zhu S, Liu H, Xing Y, et al: A case control and family based association study of the neuregulin1 gene and schizophrenia. J Med Genet. 41:31–34. 2004.PubMed/NCBI View Article : Google Scholar | |
Rimer M, Barrett DW, Maldonado MA, Vock VM and Gonzalez-Lima F: Neuregulin-1 immunoglobulin-like domain mutant mice: Clozapine sensitivity and impaired latent inhibition. Neuroreport. 16:271–275. 2005.PubMed/NCBI View Article : Google Scholar | |
Yang X, Kuo Y, Devay P, Yu C and Role L: A cysteine-rich isoform of neuregulin controls the level of expression of neuronal nicotinic receptor channels during synaptogenesis. Neuron. 20:255–270. 1998.PubMed/NCBI View Article : Google Scholar | |
Falola O, Osamor VC, Adebiyi M and Adebiyi E: Analyzing a single nucleotide polymorphism in schizophrenia: A meta-analysis approach. Neuropsychiatr Dis Treat. 13:2243–2250. 2017.PubMed/NCBI View Article : Google Scholar | |
Hennah W, Varilo T, Kestilä M, Paunio T, Arajärvi R, Haukka J, Parker A, Martin R, Levitzky S, Partonen T, et al: Haplotype transmission analysis provides evidence of association for DISC1 to schizophrenia and suggests sex-dependent effects. Hum Mol Genet. 12:3151–3159. 2003.PubMed/NCBI View Article : Google Scholar | |
Hodgkinson CA, Goldman D, Jaeger J, Persaud S, Kane JM, Lipsky RH and Malhotra AK: Disrupted in schizophrenia 1 (DISC1): Association with schizophrenia, schizoaffective disorder, and bipolar disorder. Am J Hum Genet. 75:862–872. 2004.PubMed/NCBI View Article : Google Scholar | |
Callicott JH, Straub RE, Pezawas L, Egan MF, Mattay VS, Hariri AR, Verchinski BA, Meyer-Lindenberg A, Balkissoon R, Kolachana B, et al: Variation in DISC1 affects hippocampal structure and function and increases risk for schizophrenia. Proc Natl Acad Sci USA. 102:8627–8632. 2005.PubMed/NCBI View Article : Google Scholar | |
Hennah W, Tuulio-Henriksson A, Paunio T, Ekelund J, Varilo T, Partonen T, Cannon TD, Lönnqvist J and Peltonen L: A haplotype within the DISC1 gene is associated with visual memory functions in families with a high density of schizophrenia. Mol Psychiatry. 10:1097–1103. 2005.PubMed/NCBI View Article : Google Scholar | |
Sawa A and Snyder SH: Genetics Two genes link two distinct psychoses. Science. 310:1128–1129. 2005.PubMed/NCBI View Article : Google Scholar | |
el-Husseini AD and Bredt DS: Protein palmitoylation: A regulator of neuronal development and function. Nat Rev Neurosci. 3:791–802. 2002.PubMed/NCBI View Article : Google Scholar | |
Borowsky B, Adham N, Jones KA, Raddatz R, Artymyshyn R, Ogozalek KL, Durkin MM, Lakhlani PP, Bonini JA, Pathirana S, et al: Trace amines: Identification of a family of mammalian G protein-coupled receptors. Proc Natl Acad Sci USA. 98:8966–8971. 2001.PubMed/NCBI View Article : Google Scholar | |
Chumakov I, Blumenfeld M, Guerassimenko O, Cavarec L, Palicio M, Abderrahim H, Bougueleret L, Barry C, Tanaka H, La Rosa P, et al: Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proc Natl Acad Sci USA. 99:13675–13680. 2002.PubMed/NCBI View Article : Google Scholar | |
Mulle JG, Chowdari KV, Nimgaonkar V and Chakravarti A: No evidence for association to the G72/G30 locus in an independent sample of schizophrenia families. Mol Psychiatry. 10:431–433. 2005.PubMed/NCBI View Article : Google Scholar | |
Jaffrey SR, Snowman AM, Eliasson MJ, Cohen NA and Snyder SH: CAPON: A protein associated with neuronal nitric oxide synthase that regulates its interactions with PSD95. Neuron. 20:115–124. 1998.PubMed/NCBI View Article : Google Scholar | |
Pimm J, McQuillin A, Thirumalai S, Lawrence J, Quested D, Bass N, Lamb G, Moorey H, Datta SR, Kalsi G, et al: The Epsin 4 gene on chromosome 5q, which encodes the clathrin-associated protein enthoprotin, is involved in the genetic susceptibility to schizophrenia. Am J Hum Genet. 76:902–907. 2005.PubMed/NCBI View Article : Google Scholar | |
Lewis DA, Hashimoto T and Volk DW: Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci. 6:312–324. 2005.PubMed/NCBI View Article : Google Scholar | |
Badner JA and Gershon ES: Meta-analysis of whole-genome linkage scans of bipolar disorder and schizophrenia. Mol Psychiatry. 7:405–411. 2002.PubMed/NCBI View Article : Google Scholar | |
Lewis CM, Levinson DF, Wise LH, DeLisi LE, Straub RE, Hovatta I, Williams NM, Schwab SG, Pulver AE, Faraone SV, et al: Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: Schizophrenia. Am J Hum Genet. 73:34–48. 2003.PubMed/NCBI View Article : Google Scholar | |
O'Donovan MC, Craddock N, Norton N, Williams H, Peirce T, Moskvina V, Nikolov I, Hamshere M, Carroll L, Georgieva L, et al: Molecular genetics of schizophrenia collaboration: Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nat Genet. 40:1053–1055. 2008.PubMed/NCBI View Article : Google Scholar | |
Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D, Werge T, Pietiläinen OP, Mors O, Mortensen PB, et al: Genetic Risk and Outcome in Psychosis (GROUP): Common variants conferring risk of schizophrenia. Nature. 460:744–747. 2009.PubMed/NCBI View Article : Google Scholar | |
Purcell SM, Wray NR, Stone JL, Visscher PM, O'Donovan MC, Sullivan PF and Sklar P: International Schizophrenia Consortium. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature. 460:748–752. 2009.PubMed/NCBI View Article : Google Scholar | |
Richards AL, Pardiñas AF, Frizzati A, Tansey KE, Lynham AJ, Holmans P, Legge SE, Savage JE, Agartz I, Andreassen OA, et al: GROUP Investigators; EUGEI WP2 Group; Schizophrenia Working Group of the Psychiatric Genomics Consortium: The relationship between polygenic risk scores and cognition in schizophrenia. Schizophr Bull. 46:336–344. 2020.PubMed/NCBI View Article : Google Scholar | |
Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 511:421–427. 2014.PubMed/NCBI View Article : Google Scholar | |
Gatt JM, Burton KL, Williams LM and Schofield PR: Specific and common genes implicated across major mental disorders: A review of meta-analysis studies. J Psychiatr Res. 60:1–13. 2015.PubMed/NCBI View Article : Google Scholar | |
Crow TJ: ‘The missing genes: What happened to the heritability of psychiatric disorders?’. Mol Psychiatry. 16:362–364. 2011.PubMed/NCBI View Article : Google Scholar | |
McClellan JM, Susser E and King MC: Schizophrenia: A common disease caused by multiple rare alleles. Br J Psychiatry. 190:194–199. 2007.PubMed/NCBI View Article : Google Scholar | |
Luo X, Huang L, Han L, Luo Z, Hu F, Tieu R and Gan L: Systematic prioritization and integrative analysis of copy number variations in schizophrenia reveal key schizophrenia susceptibility genes. Schizophr Bull. 40:1285–1299. 2014.PubMed/NCBI View Article : Google Scholar | |
Murphy KC, Jones LA and Owen MJ: High rates of schizophrenia in adults with velo-cardio-facial syndrome. Arch Gen Psychiatry. 56:940–945. 1999.PubMed/NCBI View Article : Google Scholar | |
Kobrynski LJ and Sullivan KE: Velocardiofacial syndrome, DiGeorge syndrome: The chromosome 22q11.2 deletion syndromes. Lancet. 370:1443–1452. 2007.PubMed/NCBI View Article : Google Scholar | |
Giegling I, Hosak L, Mössner R, Serretti A, Bellivier F, Claes S, Collier DA, Corrales A, DeLisi LE, Gallo C, et al: Genetics of schizophrenia: A consensus paper of the WFSBP Task Force on Genetics. World J Biol Psychiatry. 18:492–505. 2017.PubMed/NCBI View Article : Google Scholar | |
Fromer M, Pocklington AJ, Kavanagh DH, Williams HJ, Dwyer S, Gormley P, Georgieva L, Rees E, Palta P, Ruderfer DM, et al: De novo mutations in schizophrenia implicate synaptic networks. Nature. 506:179–184. 2014.PubMed/NCBI View Article : Google Scholar | |
Purcell SM, Moran JL, Fromer M, Ruderfer D, Solovieff N, Roussos P, O'Dushlaine C, Chambert K, Bergen SE, Kähler A, et al: A polygenic burden of rare disruptive mutations in schizophrenia. Nature. 506:185–190. 2014.PubMed/NCBI View Article : Google Scholar |