Mitochondrial nanotargeting in malignancies (Review)
- Authors:
- Anamaria Magdalena Tomşa
- Andrei Picoş
- Alina Monica Picoş
- Andreea Liana Răchişan
-
Affiliations: Department of Mother and Child, Second Pediatric Clinic, ‘Iuliu Haţieganu’ University of Medicine and Pharmacy, 400012 Cluj‑Napoca, Romania, Department of Oral Rehabilitation, ‘Iuliu Haţieganu’ University of Medicine and Pharmacy, 400012 Cluj‑Napoca, Romania, Department of Prosthetics and Dental Materials, ‘Iuliu Haţieganu’ University of Medicine and Pharmacy, 400012 Cluj‑Napoca, Romania - Published online on: July 17, 2020 https://doi.org/10.3892/etm.2020.9023
- Pages: 3444-3451
This article is mentioned in:
Abstract
Kruger S, Ilmer M, Kobold S, Cadilha BL, Endres S, Ormanns S, Schuebbe G, Renz BW, D'Haese JG, Schloesser H, et al: Advances in cancer immunotherapy 2019 - latest trends. J Exp Clin Cancer Res. 38(268)2019.PubMed/NCBI View Article : Google Scholar | |
Singh M, Harris-Birtill DCC, Markar SR, Hanna GB and Elson DS: Application of gold nanoparticles for gastrointestinal cancer theranostics: A systematic review. Nanomedicine (Lond). 11:2083–2098. 2015.PubMed/NCBI View Article : Google Scholar | |
Nayak D, Minz AP, Ashe S, Rauta PR, Kumari M, Chopra P and Nayak B: Synergistic combination of antioxidants, silver nanoparticles and chitosan in a nanoparticle based formulation: Characterization and cytotoxic effect on MCF-7 breast cancer cell lines. J Colloid Interface Sci. 470:142–152. 2016.PubMed/NCBI View Article : Google Scholar | |
Hockl PF, Wolosiuk A, Pérez-Sáez JM, Bordoni AV, Croci DO, Toum-Terrones Y, Soler-Illia GJAA and Rabinovich GA: Glyco-nano-oncology: Novel therapeutic opportunities by combining small and sweet. Pharmacol Res. 109:45–54. 2016.PubMed/NCBI View Article : Google Scholar | |
Ancuceanu R, Dinu M, Neaga I, Laszlo FG and Boda D: Development of QSAR machine learning-based models to forecast the effect of substances on malignant melanoma cells. Oncol Lett. 17:4188–4196. 2019.PubMed/NCBI View Article : Google Scholar | |
Solomon I, Voiculescu VM, Caruntu C, Lupu M, Popa A, Ilie MA, Albulescu R, Caruntu A, Tanase C, Constantin C, et al: Neuroendocrine factors and head and neck squamous cell carcinoma: An affair to remember. Dis Markers. 2018(9787831)2018.PubMed/NCBI View Article : Google Scholar | |
Jooste V, Remontet L, Colonna M, Belot A, Launoy G, Binder F, Faivre J and Bouvier AM: Trends in the incidence of digestive cancers in France between 1980 and 2005 and projections for the year 2010. Eur J Cancer Prev. 20:375–380. 2011.PubMed/NCBI View Article : Google Scholar | |
Boda D, Docea AO, Calina D, Ilie MA, Caruntu C, Zurac S, Neagu M, Constantin C, Branisteanu DE, Voiculescu V, et al: Human papilloma virus: Apprehending the link with carcinogenesis and unveiling new research avenues (Review). Int J Oncol. 52:637–655. 2018.PubMed/NCBI View Article : Google Scholar | |
Pei X, Song F and Wang Z: Emerging incidence trends and application of curative treatments of pancreatic cancer in the USA. Medicine (Baltimore). 98(e17175)2019.PubMed/NCBI View Article : Google Scholar | |
Zeng S, Pöttler M, Lan B, Grützmann R, Pilarsky C and Yang H: Chemoresistance in pancreatic cancer. Int J Mol Sci. 20(4504)2019.PubMed/NCBI View Article : Google Scholar | |
Pellino A, Riello E, Nappo F, Brignola S, Murgioni S, Djaballah SA, Lonardi S, Zagonel V, Rugge M, Loupakis F, et al: Targeted therapies in metastatic gastric cancer: Current knowledge and future perspectives. World J Gastroenterol. 25:5773–5788. 2019.PubMed/NCBI View Article : Google Scholar | |
Hall WA and Goodman KA: Radiation therapy for pancreatic adenocarcinoma, a treatment option that must be considered in the management of a devastating malignancy. Radiat Oncol. 14(114)2019.PubMed/NCBI View Article : Google Scholar | |
Dekker E, Tanis PJ, Vleugels JLA, Kasi PM and Wallace MB: Colorectal cancer. Lancet. 394:1467–1480. 2019.PubMed/NCBI View Article : Google Scholar | |
Blundon MA and Dasgupta S: Metabolic dysregulation controls endocrine therapy-resistant cancer recurrence and metastasis. Endocrinology. 160:1811–1820. 2019.PubMed/NCBI View Article : Google Scholar | |
Wang S, Cowley LA and Liu XS: Sex Differences in cancer immunotherapy efficacy, biomarkers, and therapeutic strategy. Molecules. 24(3214)2019.PubMed/NCBI View Article : Google Scholar | |
Li Y, Ayala-Orozco C, Rauta PR and Krishnan S: The application of nanotechnology in enhancing immunotherapy for cancer treatment: Current effects and perspective. Nanoscale. 11:17157–17178. 2019.PubMed/NCBI View Article : Google Scholar | |
Lin W: Introduction: Nanoparticles in medicine. Chem Rev. 115:10407–10409. 2015.PubMed/NCBI View Article : Google Scholar | |
Saeed M, Gao J, Shi Y, Lammers T and Yu H: Engineering nanoparticles to reprogram the tumor immune microenvironment for improved cancer immunotherapy. Theranostics. 9:7981–8000. 2019.PubMed/NCBI View Article : Google Scholar | |
van der Meel R, Sulheim E, Shi Y, Kiessling F, Mulder WJM and Lammers T: Smart cancer nanomedicine. Nat Nanotechnol. 14:1007–1017. 2019.PubMed/NCBI View Article : Google Scholar | |
Raza F, Zafar H, You X, Khan A, Wu J and Ge L: Cancer nanomedicine: Focus on recent developments and self-assembled peptide nanocarriers. J Mater Chem B Mater Biol Med. 7:7639–7655. 2019.PubMed/NCBI View Article : Google Scholar | |
Thakur V and Kutty RV: Recent advances in nanotheranostics for triple negative breast cancer treatment. J Exp Clin Cancer Res. 38(430)2019.PubMed/NCBI View Article : Google Scholar | |
Wang L, Huang J, Chen H, Wu H, Xu Y, Li Y, Yi H, Wang YA, Yang L and Mao H: Exerting enhanced permeability and retention effect driven delivery by ultrafine iron oxide nanoparticles with T1-T2 switchable magnetic resonance imaging contrast. ACS Nano. 11:4582–4592. 2017.PubMed/NCBI View Article : Google Scholar | |
Gholami A, Mousavi SM, Hashemi SA, Ghasemi Y, Chiang WH and Parvin N: Current trends in chemical modifications of magnetic nanoparticles for targeted drug delivery in cancer chemotherapy. Drug Metab Rev. 52:205–224. 2020.PubMed/NCBI View Article : Google Scholar | |
Sharma H, Mishra PK, Talegaonkar S and Vaidya B: Metal nanoparticles: A theranostic nanotool against cancer. Drug Discov Today. 20:1143–1151. 2015.PubMed/NCBI View Article : Google Scholar | |
Tomsa AM, Alexa AL, Junie ML, Rachisan AL and Ciumarnean L: Oxidative stress as a potential target in acute kidney injury. PeerJ. 7(e8046)2019.PubMed/NCBI View Article : Google Scholar | |
Zuberek M and Grzelak A: Nanoparticles-caused oxidative imbalance. Adv Exp Med Biol. 1048:85–98. 2018.PubMed/NCBI View Article : Google Scholar | |
Ghosn M, Kourie HR and Tabchi S: Gastrointestinal cancers in the era of theranostics: Updates and future perspectives. World J Gastroenterol. 21:8473–8477. 2015.PubMed/NCBI View Article : Google Scholar | |
Zeng Q and Baker I: Iron/iron oxide nanoparticle and use thereof. Patent WO2012036978A1. Filed September 9, 2011; issued March 22, 2012. | |
Abd-Elgaliel WR and Tung CH: Protease degradable polypeptides and uses thereof. Patent WO2012075241A3. Filed December 1, 2011; issued June 7, 2012. | |
El-Sayed MEH and Yuksel Durmaz Y: Polymeric nanoparticles for ultrasound imaging and therapy. Patent WO2013055791A1. Filed October 10, 2012; issued April 18, 2013. | |
Xian W, McKeon F, Vincent M, Crum C and Ho KY: Methods and reagents for detection and treatment of esophageal metaplasia. Patent WO2012044992A2. Filed September 30, 2011; issued April 5, 2012. | |
Iyer K, Evans C, Clemons T, Fitzgerald M, Dunlop S, Luzinov I and Zdyrko B: Multifunctional nanoparticles. Patent WO2012075533A1. Filed December 7, 2011; issued June 14, 2012. | |
Zhao Y: Nanoparticles and nanoparticle compositions. Patent WO2011130114A1. Filed April 8, 2011; issued October 20, 2011. | |
Bayford RH, Roitt IM, Rademacher TW, Demosthenous A and Iles RK: Detection of cancer. Patent WO2010052503A1. Filed November 6, 2009; issued May 14, 2010. | |
Zhu X, Lu N, Zhou Y, Xuan S, Zhang J, Giampieri F, Zhang Y, Yang F, Yu R, Battino M, et al: Targeting pancreatic cancer cells with peptide-functionalized polymeric magnetic nanoparticles. Int J Mol Sci. 20(2988)2019.PubMed/NCBI View Article : Google Scholar | |
Wei QY, He KM, Chen JL, Xu YM and Lau ATY: Phytofabrication of nanoparticles as novel drugs for anticancer applications. Molecules. 24(4246)2019.PubMed/NCBI View Article : Google Scholar | |
Fang L, Fan H, Guo C, Cui L, Zhang P, Mu H, Xu H, Zhao F and Chen D: Novel mitochondrial targeting multifunctional surface charge-reversal polymeric nanoparticles for cancer treatment. J Biomed Nanotechnol. 15:2151–2163. 2019.PubMed/NCBI View Article : Google Scholar | |
Cavalcante GC, Schaan AP, Cabral GF, Santana-da-Silva MN, Pinto P, Vidal AF and Ribeiro-Dos-Santos Â: A cell's fate: An Overview of the molecular biology and genetics of apoptosis. Int J Mol Sci. 20(4133)2019.PubMed/NCBI View Article : Google Scholar | |
Xia M, Zhang Y, Jin K, Lu Z, Zeng Z and Xiong W: Communication between mitochondria and other organelles: A brand-new perspective on mitochondria in cancer. Cell Biosci. 9(27)2019.PubMed/NCBI View Article : Google Scholar | |
Cho YL, Tan HWS, Saquib Q, Ren Y, Ahmad J, Wahab R, He W, Bay BH and Shen HM: Dual role of oxidative stress-JNK activation in autophagy and apoptosis induced by nickel oxide nanoparticles in human cancer cells. Free Radic Biol Med. 153:173–186. 2020.PubMed/NCBI View Article : Google Scholar | |
Chattopadhyay S, Dash SK, Tripathy S, Das B, Kar Mahapatra S, Pramanik P and Roy S: Cobalt oxide nanoparticles induced oxidative stress linked to activation of TNF-α/caspase-8/p38-MAPK signaling in human leukemia cells. J Appl Toxicol. 35:603–613. 2015.PubMed/NCBI View Article : Google Scholar | |
Dai DF, Chiao YA, Martin GM, Marcinek DJ, Basisty N, Quarles EK and Rabinovitch PS: Mitochondrial-targeted catalase: Extended longevity and the roles in various disease models. Prog Mol Biol Transl Sci. 146:203–241. 2017.PubMed/NCBI View Article : Google Scholar | |
Li Y and Ju D: The role of autophagy in nanoparticles-induced toxicity and its related cellular and molecular mechanisms. Adv Exp Med Biol. 1048:71–84. 2018.PubMed/NCBI View Article : Google Scholar | |
Cordani M and Somoza Á: Targeting autophagy using metallic nanoparticles: A promising strategy for cancer treatment. Cell Mol Life Sci. 76:1215–1242. 2019.PubMed/NCBI View Article : Google Scholar | |
Wallace DC: Mitochondria and cancer. Nat Rev Cancer. 12:685–698. 2012.PubMed/NCBI View Article : Google Scholar | |
Guo R, Peng H, Tian Y, Shen S and Yang W: Mitochondria-targeting magnetic composite nanoparticles for enhanced phototherapy of cancer. Small. 12:4541–4552. 2016.PubMed/NCBI View Article : Google Scholar | |
Yin B, Li KHK, Ho LWC, Chan CKW and Choi CHJ: Toward understanding in vivo sequestration of nanoparticles at the molecular level. ACS Nano. 12:2088–2093. 2018.PubMed/NCBI View Article : Google Scholar | |
Bader JE, Enos RT, Velázquez KT, Carson MS, Nagarkatti M, Nagarkatti PS, Chatzistamou I, Davis JM, Carson JA, Robinson CM, et al: Macrophage depletion using clodronate liposomes decreases tumorigenesis and alters gut microbiota in the AOM/DSS mouse model of colon cancer. Am J Physiol Gastrointest Liver Physiol. 314:G22–G31. 2018.PubMed/NCBI View Article : Google Scholar | |
Kim YJ, Perumalsamy H, Castro-Aceituno V, Kim D, Markus J, Lee S, Kim S, Liu Y and Yang DC: Photoluminescent and self-assembled hyaluronic acid-zinc oxide-ginsenoside Rh2 nanoparticles and their potential Caspase-9 apoptotic mechanism towards cancer cell lines. Int J Nanomedicine. 14:8195–8208. 2019.PubMed/NCBI View Article : Google Scholar | |
Wang H, Zhang F, Wen H, Shi W, Huang Q, Huang Y, Xie J, Li P, Chen J, Qin L, et al: Tumor- and mitochondria-targeted nanoparticles eradicate drug resistant lung cancer through mitochondrial pathway of apoptosis. J Nanobiotechnology. 18(8)2020.PubMed/NCBI View Article : Google Scholar | |
Gong N, Ma X, Ye X, Zhou Q, Chen X, Tan X, Yao S, Huo S, Zhang T, Chen S, et al: Carbon-dot-supported atomically dispersed gold as a mitochondrial oxidative stress amplifier for cancer treatment. Nat Nanotechnol. 14:379–387. 2019.PubMed/NCBI View Article : Google Scholar | |
Sun H, Jiang C, Wu L, Bai X and Zhai S: Cytotoxicity-related bioeffects induced by nanoparticles: the role of surface chemistry. Front Bioeng Biotechnol. 7(414)2019.PubMed/NCBI View Article : Google Scholar | |
Kurtz-Chalot A, Villiers C, Pourchez J, Boudard D, Martini M, Marche PN, Cottier M and Forest V: Impact of silica nanoparticle surface chemistry on protein corona formation and consequential interactions with biological cells. Mater Sci Eng C. 75:16–24. 2017.PubMed/NCBI View Article : Google Scholar | |
Wang Z, Wang C, Liu S, He W, Wang L, Gan J, Huang Z, Wang Z, Wei H, Zhang J, et al: Specifically formed corona on silica nanoparticles enhances transforming growth factor β1 activity in triggering lung fibrosis. ACS Nano. 11:1659–1672. 2017.PubMed/NCBI View Article : Google Scholar | |
Vasileiou PVS, Evangelou K, Vlasis K, Fildisis G, Panayiotidis MI, Chronopoulos E, Passias PG, Kouloukoussa M, Gorgoulis VG and Havaki S: Mitochondrial homeostasis and cellular senescence. Cells. 8(686)2019.PubMed/NCBI View Article : Google Scholar | |
Burgos-Morón E, Abad-Jiménez Z, Marañón AM, Iannantuoni F, Escribano-López I, López-Domènech S, Salom C, Jover A, Mora V, Roldan I, et al: Relationship between oxidative stress, ER stress, and inflammation in type 2 diabetes: The Battle Continues. J Clin Med. 8(1385)2019.PubMed/NCBI View Article : Google Scholar | |
Balan C, Chis MI, Rachisan AL and Baia M: A vibrational study of inulin by means of experimental and theoretical methods. J Mol Struct. 1164:84–88. 2018. | |
Picos A, Rachisan AL and Dadarlat A: Minimally invasive dental treatment using composites and ceramics in GERD diagnoses patients. Mater Plast. 55:252–254. 2018. | |
Lin LS, Wang JF, Song J, Liu Y, Zhu G, Dai Y, Shen Z, Tian R, Song J, Wang Z, et al: Cooperation of endogenous and exogenous reactive oxygen species induced by zinc peroxide nanoparticles to enhance oxidative stress-based cancer therapy. Theranostics. 9:7200–7209. 2019.PubMed/NCBI View Article : Google Scholar | |
Sur S, Nakanishi H, Flaveny C, Ippolito JE, McHowat J, Ford DA and Ray RB: Inhibition of the key metabolic pathways, glycolysis and lipogenesis, of oral cancer by bitter melon extract. Cell Commun Signal. 17(131)2019.PubMed/NCBI View Article : Google Scholar | |
Huo D, Zhu J, Chen G, Chen Q, Zhang C, Luo X, Jiang W, Jiang X, Gu Z and Hu Y: Eradication of unresectable liver metastasis through induction of tumour specific energy depletion. Nat Commun. 10(3051)2019.PubMed/NCBI View Article : Google Scholar |