1
|
Black DM and Rosen CJ: Postmenopausal
osteoporosis. N Engl J Med. 374:2096–2097. 2016.PubMed/NCBI View Article : Google Scholar
|
2
|
Qiao L, Liu D, Li CG and Wang YJ: MiR-203
is essential for the shift from osteogenic differentiation to
adipogenic differentiation of mesenchymal stem cells in
postmenopausal osteoporosis. Eur Rev Med Pharmacol Sci.
22:5804–5814. 2018.PubMed/NCBI View Article : Google Scholar
|
3
|
Jing H, Liao L, Su X, Shuai Y, Zhang X,
Deng Z and Jin Y: Declining histone acetyltransferase GCN5
represses BMSC-mediated angiogenesis during osteoporosis. FASEB J.
31:4422–4433. 2017.PubMed/NCBI View Article : Google Scholar
|
4
|
Paraskevopoulou MD and Hatzigeorgiou AG:
Analyzing miRNA-lncRNA interactions. Methods Mol Biol.
1402:271–286. 2016.PubMed/NCBI View Article : Google Scholar
|
5
|
Li Z, Zhang W and Huang Y: MiRNA-133a is
involved in the regulation of postmenopausal osteoporosis through
promoting osteoclast differentiation. Acta Biochim Biophys Sin
(Shanghai). 50:273–280. 2018.PubMed/NCBI View Article : Google Scholar
|
6
|
Letarouilly JG, Broux O and Clabaut A: New
insights into the epigenetics of osteoporosis. Genomics.
111:793–798. 2019.PubMed/NCBI View Article : Google Scholar
|
7
|
Seeliger C, Karpinski K, Haug AT, Vester
H, Schmitt A, Bauer JS and van Griensven M: Five freely circulating
miRNAs and bone tissue miRNAs are associated with osteoporotic
fractures. J Bone Miner Res. 29:1718–1728. 2014.PubMed/NCBI View Article : Google Scholar
|
8
|
Bedene A, Mencej Bedrač S, Ješe L, Marc J,
Vrtačnik P, Preželj J, Kocjan T, Kranjc T and Ostanek B: MiR-148a
the epigenetic regulator of bone homeostasis is increased in plasma
of osteoporotic postmenopausal women. Wien Klin Wochenschr. 128
(Suppl 7):S519–S526. 2016.PubMed/NCBI View Article : Google Scholar
|
9
|
Guo DW, Han YX, Cong L, Liang D and Tu GJ:
Resveratrol prevents osteoporosis in ovariectomized rats by
regulating microRNA-338-3p. Mol Med Rep. 12:2098–2106.
2015.PubMed/NCBI View Article : Google Scholar
|
10
|
Wang C, Bian Z, Wei D and Zhang JG:
miR-29b regulates migration of human breast cancer cells. Mol Cell
Biochem. 352:197–207. 2011.PubMed/NCBI View Article : Google Scholar
|
11
|
Cortez MA, Nicoloso MS, Shimizu M, Rossi
S, Gopisetty G, Molina JR, Carlotti C Jr, Tirapelli D, Neder L,
Brassesco MS, et al: miR-29b and miR-125a regulate podoplanin and
suppress invasion in glioblastoma. Genes Chromosomes Cancer.
49:981–990. 2010.PubMed/NCBI View Article : Google Scholar
|
12
|
Garzon R, Heaphy CE, Havelange V, Fabbri
M, Volinia S, Tsao T, Zanesi N, Kornblau SM, Marcucci G, Calin GA,
et al: MicroRNA 29b functions in acute myeloid leukemia. Blood.
114:5331–5341. 2009.PubMed/NCBI View Article : Google Scholar
|
13
|
Zeng Q, Wang Y, Gao J, Yan Z, Li Z, Zou X,
Li Y, Wang J and Guo Y: miR-29b-3p regulated osteoblast
differentiation via regulating IGF-1 secretion of mechanically
stimulated osteocytes. Cell Mol Biol Lett. 24(11)2019.PubMed/NCBI View Article : Google Scholar
|
14
|
McCall MN, Bolstad BM and Irizarry RA:
Frozen robust multiarray analysis (fRMA). Biostatistics.
11:242–253. 2010.PubMed/NCBI View Article : Google Scholar
|
15
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
16
|
Friedman RC, Farh KK, Burge CB and Bartel
DP: Most mammalian mRNAs are conserved targets of microRNAs. Genome
Res. 19:92–105. 2009.PubMed/NCBI View Article : Google Scholar
|
17
|
Szklarczyk D, Morris JH, Cook H, Kuhn M,
Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P, et al:
The STRING database in 2017: Quality-controlled protein-protein
association networks, made broadly accessible. Nucleic Acids Res.
45:D362–D368. 2017.PubMed/NCBI View Article : Google Scholar
|
18
|
Mootha VK, Lindgren CM, Eriksson KF,
Subramanian A, Sihag S, Lehar J, Puigserver P, Carlsson E,
Ridderstrale M, Laurila E, et al: PGC-1alpha-responsive genes
involved in oxidative phosphorylation are coordinately
downregulated in human diabetes. Nat Genet. 34:267–273.
2003.PubMed/NCBI View
Article : Google Scholar
|
19
|
Mathavan N, Turunen MJ, Tägil M and
Isaksson H: Characterising bone material composition and structure
in the ovariectomized (OVX) rat model of osteoporosis. Calcif
Tissue Int. 97:134–144. 2015.PubMed/NCBI View Article : Google Scholar
|
20
|
Rossi M, Pitari MR, Amodio N, Di Martino
MT, Conforti F, Leone E, Botta C, Paolino FM, Del Giudice T,
Iuliano E, et al: miR-29b negatively regulates human osteoclastic
cell differentiation and function: Implications for the treatment
of multiple myeloma-related bone disease. J Cell Physiol.
228:1506–1515. 2013.PubMed/NCBI View Article : Google Scholar
|
21
|
Zhang B, Shetti D, Fan C and Wei K:
miR-29b-3p promotes progression of MDA-MB-231 triple-negative
breast cancer cells through downregulating TRAF3. Biol Res.
52(38)2019.PubMed/NCBI View Article : Google Scholar
|
22
|
Yu F, Chen B, Dong P and Zheng J: HOTAIR
epigenetically modulates PTEN expression via microRNA-29b: A novel
mechanism in regulation of liver fibrosis. Mol Ther. 25:205–217.
2017.PubMed/NCBI View Article : Google Scholar
|
23
|
Yan B, Guo Q, Fu FJ, Wang Z, Yin Z, Wei YB
and Yang JR: The role of miR-29b in cancer: Regulation, function,
and signaling. Onco Targets Ther. 8:539–548. 2015.PubMed/NCBI View Article : Google Scholar
|
24
|
Dong Y, Liang G, Yuan B, Yang C, Gao R and
Zhou X: MALAT1 promotes the proliferation and metastasis of
osteosarcoma cells by activating the PI3K/Akt pathway. Tumour Biol.
36:1477–1486. 2015.PubMed/NCBI View Article : Google Scholar
|
25
|
Jin Y, Chen W, Yang H, Yan Z, Lai Z, Feng
J, Peng J and Lin J: Scutellaria barbata D: Don inhibits migration
and invasion of colorectal cancer cells via suppression of PI3K/AKT
and TGF-β/Smad signaling pathways. Exp Ther Med. 14:5527–5534.
2017.PubMed/NCBI View Article : Google Scholar
|
26
|
Wu S, Wang Y, Yuan Z, Wang S, Du H, Liu X,
Wang Q and Zhu X: Human adiposederived mesenchymal stem cells
promote breast cancer MCF7 cell epithelialmesenchymal transition by
cross interacting with the TGFβ/Smad and PI3K/AKT signaling
pathways. Mol Med Rep. 19:177–186. 2019.PubMed/NCBI View Article : Google Scholar
|