1
|
Matozaki T, Murata Y, Okazawa H and
Ohnishi H: Functions and molecular mechanisms of the CD47-SIRPalpha
signalling pathway. Trends Cell Biol. 19:72–80. 2009.PubMed/NCBI View Article : Google Scholar
|
2
|
Baccelli I, Stenzinger A, Vogel V,
Pfitzner BM, Klein C, Wallwiener M, Scharpff M, Saini M,
Holland-Letz T, Sinn HP, et al: Co-expression of MET and CD47 is a
novel prognosticator for survival of luminal breast cancer
patients. Oncotarget. 5:8147–8160. 2014.PubMed/NCBI View Article : Google Scholar
|
3
|
Yoshida K, Tsujimoto H, Matsumura K,
Kinoshita M, Takahata R, Matsumoto Y, Hiraki S, Ono S, Seki S,
Yamamoto J and Hase K: CD47 is an adverse prognostic factor and a
therapeutic target in gastric cancer. Cancer Med. 4:1322–1333.
2015.PubMed/NCBI View
Article : Google Scholar
|
4
|
Liu R, Wei H, Gao P, Yu H, Wang K, Fu Z,
Ju B, Zhao M, Dong S, Li Z, et al: CD47 promotes ovarian cancer
progression by inhibiting macrophage phagocytosis. Oncotarget.
8:39021–39032. 2017.PubMed/NCBI View Article : Google Scholar
|
5
|
Tao H, Qian P, Wang F, Yu H and Guo Y:
Targeting CD47 enhances the efficacy of anti-PD-1 and CTLA-4 in an
esophageal squamous cell cancer preclinical model. Oncol Res.
25:1579–1587. 2017.PubMed/NCBI View Article : Google Scholar
|
6
|
Liu L, Zhang L, Yang L, Li H, Li R, Yu J,
Yang L, Wei F, Yan C, Sun Q, et al: Anti-CD47 antibody as a
targeted therapeutic agent for human lung cancer and cancer stem
cells. Front Immunol. 8(404)2017.PubMed/NCBI View Article : Google Scholar
|
7
|
Zhang X, Fan J, Wang S, Li Y, Wang Y, Li
S, Luan J, Wang Z, Song P, Chen Q, et al: Targeting CD47 and
autophagy elicited enhanced antitumor effects in non-small cell
lung cancer. Cancer Immunol Res. 5:363–375. 2017.PubMed/NCBI View Article : Google Scholar
|
8
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2016. CA Cancer J Clin. 66:7–30. 2016.PubMed/NCBI View Article : Google Scholar
|
9
|
Paulson AS, Cao HS, Tempero MA and Lowy
AM: Therapeutic advances in pancreatic cancer. Gastroenterology.
144:1316–1326. 2013.PubMed/NCBI View Article : Google Scholar
|
10
|
Topalian SL, Drake CG and Pardoll DM:
Immune checkpoint blockade: A common denominator approach to cancer
therapy. Cancer Cell. 27:450–461. 2015.PubMed/NCBI View Article : Google Scholar
|
11
|
Weber J, Mandala M, Vecchio MD, Gogas HJ,
Arance AM, Cowey CL, Dalle S, Schenker M, Chiarion-Sileni V,
Marquez-Rodas I, et al: Adjuvant nivolumab versus ipilimumab in
resected stage III or IV melanoma. N Engl J Med. 377:1824–1835.
2017.PubMed/NCBI View Article : Google Scholar
|
12
|
Reck M, Schenker M, Lee KH, Provencio M,
Nishio M, Lesniewski-Kmak K, Sangha R, Ahmed S, Raimbourg J, Feeney
K, et al: Nivolumab plus ipilimumab versus chemotherapy as
first-line treatment in advanced non-small-cell lung cancer with
high tumour mutational burden: Patient-reported outcomes results
from the randomised, open-label, phase III CheckMate 227 trial. Eur
J Cancer. 116:137–147. 2019.PubMed/NCBI View Article : Google Scholar
|
13
|
Winer A, Ghatalia P, Bubes N, Anari F,
Varshavsky A, Kasireddy V, Liu Y and El-Deiry WS: Dual checkpoint
inhibition with ipilimumab plus nivolumab after progression on
sequential PD-1/PDL-1 inhibitors pembrolizumab and atezolizumab in
a patient with lynch syndrome, metastatic colon, and localized
urothelial cancer. Oncologist. 24:1416–1419. 2019.PubMed/NCBI View Article : Google Scholar
|
14
|
Symeonides SN, Anderton SM and Serrels A:
FAK-inhibition opens the door to checkpoint immunotherapy in
pancreatic cancer. J Immunother Cancer. 5(17)2017.PubMed/NCBI View Article : Google Scholar
|
15
|
Hsu FJ and Komarovskaya M: CTLA4 blockade
maximizes antitumor T-cell activation by dendritic cells presenting
idiotype protein or opsonized anti-CD20 antibody-coated lymphoma
cells. J Immunother. 25:455–468. 2002.PubMed/NCBI View Article : Google Scholar
|
16
|
Scrimieri F, Askew D, Corn DJ, Eid S,
Bobanga ID, Bjelac JA, Tsao ML, Allen F, Othman YS, Wang SC and
Huang AY: Murine leukemia virus envelope gp70 is a shared biomarker
for the high-sensitivity quantification of murine tumor burden.
Oncoimmunology. 2(e26889)2013.PubMed/NCBI View Article : Google Scholar
|
17
|
Klimp AH, de Vries EGE, Scherphof GL and
Daemen T: A potential role of macrophage activation in the
treatment of cancer. Crit Rev Oncol Hematol. 44:143–161.
2002.PubMed/NCBI View Article : Google Scholar
|
18
|
Palucka K and Banchereau J: Cancer
immunotherapy via dendritic cells. Nat Rev Cancer. 12:265–277.
2012.PubMed/NCBI View
Article : Google Scholar
|
19
|
Gordon S: Phagocytosis: An immunobiologic
process. Immunity. 44:463–475. 2016.PubMed/NCBI View Article : Google Scholar
|
20
|
Gholamin S, Mitra SS, Feroze AH, Liu J,
Kahn SA, Zhang M, Esparza R, Richard C, Ramaswamy V, Remke M, et
al: Disrupting the CD47-SIRPalpha anti-phagocytic axis by a
humanized anti-CD47 antibody is an efficacious treatment for
malignant pediatric brain tumors. Sci Transl Med.
9(eaaf2968)2017.PubMed/NCBI View Article : Google Scholar
|
21
|
Zhao X and Subramanian S: Intrinsic
resistance of solid tumors to immune checkpoint blockade therapy.
Cancer Res. 77:817–822. 2017.PubMed/NCBI View Article : Google Scholar
|
22
|
Pitt JM, Vétizou M, Daillère R, Roberti
MP, Yamazaki T, Routy B, Lepage P, Boneca IG, Chamaillard M,
Kroemer G and Zitvogel L: Resistance mechanisms to
immune-checkpoint blockade in cancer: Tumor-intrinsic and
-extrinsic factors. Immunity. 44:1255–1269. 2016.PubMed/NCBI View Article : Google Scholar
|
23
|
Sindoni A, Minutoli F, Ascenti G and
Pergolizzi S: Combination of immune checkpoint inhibitors and
radiotherapy: Review of the literature. Crit Rev Oncol Hematol.
113:63–70. 2017.PubMed/NCBI View Article : Google Scholar
|
24
|
Mace TA, Shakya R, Pitarresi JR, Swanson
B, McQuinn CW, Loftus S, Nordquist E, Cruz-Monserrate Z, Yu L,
Young G, et al: IL-6 and PD-L1 antibody blockade combination
therapy reduces tumour progression in murine models of pancreatic
cancer. Gut. 67:320–332. 2018.PubMed/NCBI View Article : Google Scholar
|
25
|
Ino Y, Yamazaki-Itoh R, Shimada K, Iwasaki
M, Kosuge T, Kanai Y and Hiraoka N: Immune cell infiltration as an
indicator of the immune microenvironment of pancreatic cancer. Br J
Cancer. 108:914–923. 2013.PubMed/NCBI View Article : Google Scholar
|
26
|
Cioffi M, Trabulo S, Hidalgo M, Costello
E, Greenhalf W, Erkan M, Kleeff J, Sainz B Jr and Heeschen C:
Inhibition of CD47 effectively targets pancreatic cancer stem cells
via dual mechanisms. Clin Cancer Res. 21:2325–2337. 2015.PubMed/NCBI View Article : Google Scholar
|
27
|
Michaels AD, Newhook TE, Adair SJ, Morioka
S, Goudreau BJ, Nagdas S, Mullen MG, Persily JB, Bullock TNJ,
Slingluff CL Jr, et al: CD47 blockade as an adjuvant immunotherapy
for resectable pancreatic cancer. Clin Cancer Res. 24:1415–1425.
2018.PubMed/NCBI View Article : Google Scholar
|