Advances in Ca2+ modulation of gastrointestinal anion secretion and its dysregulation in digestive disorders (Review)
- Authors:
- Weixi Shan
- Yanxia Hu
- Jianhong Ding
- Xiaoxu Yang
- Jun Lou
- Qian Du
- Qiushi Liao
- Lihong Luo
- Jingyu Xu
- Rui Xie
-
Affiliations: Department of Gastroenterology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China, Department of Oncology and Geriatrics, Traditional Chinese Medicine Hospital of Chishui City, Guizhou 564700, P.R. China - Published online on: August 25, 2020 https://doi.org/10.3892/etm.2020.9136
- Article Number: 8
-
Copyright: © Shan et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Berridge MJ, Lipp P and Bootman MD: The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol. 1:11–21. 2000.PubMed/NCBI View Article : Google Scholar | |
Clapham DE: Calcium signaling. Cell. 131:1047–1058. 2007.PubMed/NCBI View Article : Google Scholar | |
Kristián T and Siesjö BK: Calcium in ischemic cell death. Stroke. 29:705–718. 1998.PubMed/NCBI View Article : Google Scholar | |
Berridge MJ, Bootman MD and Roderick HL: Calcium signalling: Dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol. 4:517–529. 2003.PubMed/NCBI View Article : Google Scholar | |
Dong Z, Saikumar P, Weinberg JM and Venkatachalam MA: Calcium in cell injury and death. Annu Rev Pathol. 1:405–434. 2006.PubMed/NCBI View Article : Google Scholar | |
Romac JM, Shahid RA, Swain SM, Vigna SR and Liddle RA: Piezo1 is a mechanically activated ion channel and mediates pressure induced pancreatitis. Nat Commun. 9(1715)2018.PubMed/NCBI View Article : Google Scholar | |
Criddle DN, McLaughlin E, Murphy JA, Petersen OH and Sutton R: The pancreas misled: Signals to pancreatitis. Pancreatology. 7:436–446. 2007.PubMed/NCBI View Article : Google Scholar | |
Lee PJ and Papachristou GI: New insights into acute pancreatitis. Nat Rev Gastroenterol Hepatol. 16:479–496. 2019.PubMed/NCBI View Article : Google Scholar | |
Karlstad J, Sun Y and Singh BB: Ca(2+) signaling: An outlook on the characterization of Ca(2+) channels and their importance in cellular functions. Adv Exp Med Biol. 740:143–157. 2012.PubMed/NCBI View Article : Google Scholar | |
Kinjo TG and Schnetkamp PPM: Ca2+ chemistry, storage and transport in biologic systems: An overview. Mol Biol Intell Unit, pp1-11, 1970. | |
Foskett JK, White C, Cheung KH and Mak DO: Inositol trisphosphate receptor Ca2+ release channels. Physiol Rev. 87:593–658. 2007.PubMed/NCBI View Article : Google Scholar | |
He J, Yang X, Guo Y, Zhang F, Wan H, Sun X, Tuo B and Dong H: Ca2+ signaling in HCO3- secretion and protection of upper GI tract. Oncotarget. 8:102681–102689. 2017.PubMed/NCBI View Article : Google Scholar | |
Xie R, Dong X, Wong C, Vallon V, Tang B, Sun J, Yang S and Dong H: Molecular mechanisms of calcium-sensing receptor-mediated calcium signaling in the modulation of epithelial ion transport and bicarbonate secretion. J Biol Chem. 289:34642–34653. 2014.PubMed/NCBI View Article : Google Scholar | |
Abdulnour-Nakhoul S, Nakhoul HN, Kalliny MI, Gyftopoulos A, Rabon E, Doetjes R, Brown K and Nakhoul NL: Ion transport mechanisms linked to bicarbonate secretion in the esophageal submucosal glands. Am J Physiol Regul Integr Comp Physiol. 301:R83–R96. 2011.PubMed/NCBI View Article : Google Scholar | |
Kiela PR and Ghishan FK: Physiology of intestinal absorption and secretion. Best Pract Res Clin Gastroenterol. 30:145–159. 2016.PubMed/NCBI View Article : Google Scholar | |
Bachmann O and Seidler U: News from the end of the gut-how the highly segmental pattern of colonic HCO3- transport relates to absorptive function and mucosal integrity. Biol Pharm Bull. 34:794–802. 2011.PubMed/NCBI View Article : Google Scholar | |
Yang X, Wen G, Tuo B, Zhang F, Wan H, He J, Yang S and Dong H: Molecular mechanisms of calcium signaling in the modulation of small intestinal ion transports and bicarbonate secretion. Oncotarget. 9:3727–3740. 2017.PubMed/NCBI View Article : Google Scholar | |
Tuo B, Wen G, Zhang Y, Liu X, Wang X, Liu X and Dong H: Involvement of phosphatidylinositol 3-kinase in cAMP- and cGMP-induced duodenal epithelial CFTR activation in mice. Am J Physiol Cell Physiol. 297:C503–C515. 2009.PubMed/NCBI View Article : Google Scholar | |
Ahuja M, Jha A, Maléth J, Park S and Muallem S: cAMP and Ca²+ signaling in secretory epithelia: Crosstalk and synergism. Cell Calcium. 55:385–393. 2014.PubMed/NCBI View Article : Google Scholar | |
Lee RJ and Foskett JK: cAMP-activated Ca2+ signaling is required for CFTR-mediated serous cell fluid secretion in porcine and human airways. J Clin Invest. 120:3137–3148. 2010.PubMed/NCBI View Article : Google Scholar | |
Kallenberg LA: Calcium signalling in secretory cells. Arch Physiol Biochem. 108:385–390. 2000.PubMed/NCBI View Article : Google Scholar | |
Lee MG, Ohana E, Park HW, Yang D and Muallem S: Molecular mechanism of pancreatic and salivary gland fluid and HCO3 secretion. Physiol Rev. 92:39–74. 2012.PubMed/NCBI View Article : Google Scholar | |
Ambudkar IS: Ca²+ signaling and regulation of fluid secretion in salivary gland acinar cells. Cell Calcium. 55:297–305. 2014.PubMed/NCBI View Article : Google Scholar | |
Linan-Rico A, Ochoa-Cortes F, Beyder A, Soghomonyan S, Zuleta-Alarcon A, Coppola V and Christofi FL: Mechanosensory signaling in enterochromaffin cells and 5-HT release: Potential implications for gut inflammation. Front Neurosci. 10(564)2016.PubMed/NCBI View Article : Google Scholar | |
Thiagarajah JR, Donowitz M and Verkman AS: Secretory diarrhoea: Mechanisms and emerging therapies. Nat Rev Gastroenterol Hepatol. 12:446–457. 2015.PubMed/NCBI View Article : Google Scholar | |
Chen M, Praetorius J, Zheng W, Xiao F, Riederer B, Singh AK, Stieger N, Wang J, Shull GE, Aalkjaer C and Seidler U: The electroneutral Na+:HCO3⁻ cotransporter NBCn1 is a major pHi regulator in murine duodenum. J Physiol. 590:3317–3333. 2012.PubMed/NCBI View Article : Google Scholar | |
Frizzell RA and Hanrahan JW: Physiology of epithelial chloride and fluid secretion. Cold Spring Harb Perspect Med. 2(a009563)2012.PubMed/NCBI View Article : Google Scholar | |
Quinton PM: Role of epithelial HCO3- transport in mucin secretion: Lessons from cystic fibrosis. Am J Physiol Cell Physiol. 299:C1222–C1233. 2010.PubMed/NCBI View Article : Google Scholar | |
Furukawa O, Bi LC, Guth PH, Engel E, Hirokawa M and Kaunitz JD: NHE3 inhibition activates duodenal bicarbonate secretion in the rat. Am J Physiol Gastrointest Liver Physiol. 286:G102–G109. 2004.PubMed/NCBI View Article : Google Scholar | |
Saint-Criq V and Gray MA: Role of CFTR in epithelial physiology. Cell Mol Life Sci. 74:93–115. 2017.PubMed/NCBI View Article : Google Scholar | |
Yang N, Garcia MA and Quinton PM: Normal mucus formation requires cAMP-dependent HCO3- secretion and Ca2+-mediated mucin exocytosis. J Physiol. 591:4581–4593. 2013.PubMed/NCBI View Article : Google Scholar | |
Chávez JC, Hernández-González EO, Wertheimer E, Visconti PE, Darszon A and Treviño CL: Participation of the Cl-/HCO(3)-exchangers SLC26A3 and SLC26A6, the Cl- channel CFTR, and the regulatory factor SLC9A3R1 in mouse sperm capacitation. Biol Reprod. 86:1–14. 2012.PubMed/NCBI View Article : Google Scholar | |
Hug MJ, Tamada T and Bridges RJ: CFTR and bicarbonate secretion by [correction of to] epithelial cells. News Physiol Sci. 18:38–42. 2003.PubMed/NCBI View Article : Google Scholar | |
Binder HJ, Rajendran V, Sadasivan V and Geibel JP: Bicarbonate secretion: A neglected aspect of colonic ion transport. J Clin Gastroenterol. 39 (4 Suppl 2):S53–S58. 2005.PubMed/NCBI View Article : Google Scholar | |
Feldman M: Gastric bicarbonate secretion in humans. Effect of pentagastrin, bethanechol, and 11,16,16-trimethyl prostaglandin E2. J Clin Invest. 72:295–303. 1983.PubMed/NCBI View Article : Google Scholar | |
Fei G, Fang X, Wang GD, Liu S, Wang XY, Xia Y and Wood JD: Neurogenic mucosal bicarbonate secretion in guinea pig duodenum. Br J Pharmacol. 168:880–890. 2013.PubMed/NCBI View Article : Google Scholar | |
Rune SJ: pH in the human duodenum. Its physiological and pathophysiological significance. Digestion. 8:261–268. 1973.PubMed/NCBI View Article : Google Scholar | |
Kuna L, Jakab J, Smolic R, Raguz-Lucic N, Vcev A and Smolic M: Peptic ulcer disease: A brief review of conventional therapy and herbal treatment options. J Clin Med. 8(179)2019.PubMed/NCBI View Article : Google Scholar | |
Field M: Intestinal ion transport and the pathophysiology of diarrhea. J Clin Invest. 111:931–943. 2003.PubMed/NCBI View Article : Google Scholar | |
Gennari FJ and Weise WJ: Acid-base disturbances in gastrointestinal disease. Clin J Am Soc Nephrol. 3:1861–1868. 2008.PubMed/NCBI View Article : Google Scholar | |
Pratha VS, Hogan DL, Martensson BA, Bernard J, Zhou R and Isenberg JI: Identification of transport abnormalities in duodenal mucosa and duodenal enterocytes from patients with cystic fibrosis. Gastroenterology. 118:1051–1060. 2000.PubMed/NCBI View Article : Google Scholar | |
Xiao F, Li J, Singh AK, Riederer B, Wang J, Sultan A, Park H, Lee MG, Lamprecht G, Scholte BJ, et al: Rescue of epithelial HCO3- secretion in murine intestine by apical membrane expression of the cystic fibrosis transmembrane conductance regulator mutant F508del. J Physiol. 590:5317–5334. 2012.PubMed/NCBI View Article : Google Scholar | |
Ehre C, Ridley C and Thornton DJ: Cystic fibrosis: An inherited disease affecting mucin-producing organs. Int J Biochem Cell Biol. 52:136–145. 2014.PubMed/NCBI View Article : Google Scholar | |
Wilschanski M and Novak I: The cystic fibrosis of exocrine pancreas. Cold Spring Harb Perspect Med. 3(a009746)2013.PubMed/NCBI View Article : Google Scholar | |
Ramos AF, de Fuccio MB, Moretzsohn LD, Barbosa AJ, Passos Mdo C, Carvalho RS and Coelho LG: Cystic fibrosis, gastroduodenal inflammation, duodenal ulcer, and H. pylori infection: The ‘cystic fibrosis paradox’ revisited. J Cyst Fibros. 12:377–383. 2013.PubMed/NCBI View Article : Google Scholar | |
Kuwahara A: Involvement of the gut chemosensory system in the regulation of colonic anion secretion. Biomed Res Int. 2015(403919)2015.PubMed/NCBI View Article : Google Scholar | |
Markadieu N and Delpire E: Physiology and pathophysiology of SLC12A1/2 transporters. Pflugers Arch. 466:91–105. 2014.PubMed/NCBI View Article : Google Scholar | |
Flores CA, Melvin JE, Figueroa CD and Sepúlveda FV: Abolition of Ca2+-mediated intestinal anion secretion and increased stool dehydration in mice lacking the intermediate conductance Ca2+-dependent K+ channel Kcnn4. J Physiol. 583:705–717. 2007.PubMed/NCBI View Article : Google Scholar | |
Mohammad-Panah R, Ackerley C, Rommens J, Choudhury M, Wang Y and Bear CE: The chloride channel ClC-4 co-localizes with cystic fibrosis transmembrane conductance regulator and may mediate chloride flux across the apical membrane of intestinal epithelia. J Biol Chem. 277:566–574. 2002.PubMed/NCBI View Article : Google Scholar | |
Argenzio RA, Whipp SC and Glock RD: Pathophysiology of swine dysentery: Colonic transport and permeability studies. J Infect Dis. 142:676–684. 1980.PubMed/NCBI View Article : Google Scholar | |
Lakhan SE and Kirchgessner A: Neuroinflammation in inflammatory bowel disease. J Neuroinflammation. 7(37)2010.PubMed/NCBI View Article : Google Scholar | |
Park HW and Lee MG: Transepithelial bicarbonate secretion: Lessons from the pancreas. Cold Spring Harb Perspect Med. 2(a009571)2012.PubMed/NCBI View Article : Google Scholar | |
Kaji I, Akiba Y, Said H, Narimatsu K and Kaunitz JD: Luminal 5-HT stimulates colonic bicarbonate secretion in rats. Br J Pharmacol. 172:4655–4670. 2015.PubMed/NCBI View Article : Google Scholar | |
Sugamoto S, Kawauch S, Furukawa O, Mimaki TH and Takeuchi K: Role of endogenous nitric oxide and prostaglandin in duodenal bicarbonate response induced by mucosal acidification in rats. Dig Dis Sci. 46:1208–1216. 2001.PubMed/NCBI View Article : Google Scholar | |
Devor DC, Singh AK, Lambert LC, DeLuca A, Frizzell RA and Bridges RJ: Bicarbonate and chloride secretion in Calu-3 human airway epithelial cells. J Gen Physiol. 113:743–760. 1999.PubMed/NCBI View Article : Google Scholar | |
Condliffe SB, Doolan CM and Harvey BJ: 17beta-oestradiol acutely regulates Cl- secretion in rat distal colonic epithelium. J Physiol. 530:47–54. 2001.PubMed/NCBI View Article : Google Scholar | |
Tuo B, Wen G, Wei J, Liu X, Wang X, Zhang Y, Wu H, Dong X, Chow JY, Vallon V and Dong H: Estrogen regulation of duodenal bicarbonate secretion and sex-specific protection of human duodenum. Gastroenterology. 141:854–863. 2011.PubMed/NCBI View Article : Google Scholar | |
Yang X, Guo Y, He J, Zhang F, Sun X, Yang S and Dong H: Estrogen and estrogen receptors in the modulation of gastrointestinal epithelial secretion. Oncotarget. 8:97683–97692. 2017.PubMed/NCBI View Article : Google Scholar | |
Tang L, Peng M, Liu L, Chang W, Binder HJ and Cheng SX: Calcium-sensing receptor stimulates Cl(-)- and SCFA-dependent but inhibits cAMP-dependent HCO3(-) secretion in colon. Am J Physiol Gastrointest Liver Physiol. 308:G874–G883. 2015.PubMed/NCBI View Article : Google Scholar | |
Nathanson NM: Synthesis, trafficking, and localization of muscarinic acetylcholine receptors. Pharmacol Ther. 119:33–43. 2008.PubMed/NCBI View Article : Google Scholar | |
Gustafsson JK, Lindén SK, Alwan AH, Scholte BJ, Hansson GC and Sjövall H: Carbachol-induced colonic mucus formation requires transport via NKCC1, K+ channels and CFTR. Pflugers Arch. 467:1403–1415. 2015.PubMed/NCBI View Article : Google Scholar | |
Billet A and Hanrahan JW: The secret life of CFTR as a calcium-activated chloride channel. J Physiol. 591:5273–5278. 2013.PubMed/NCBI View Article : Google Scholar | |
Jia Y, Mathews CJ and Hanrahan JW: Phosphorylation by protein kinase C is required for acute activation of cystic fibrosis transmembrane conductance regulator by protein kinase A. J Biol Chem. 272:4978–4984. 1997.PubMed/NCBI View Article : Google Scholar | |
Kiela PR and Ghishan FK: Ion transport in the intestine. Curr Opin Gastroenterol. 25:87–91. 2009.PubMed/NCBI View Article : Google Scholar | |
Shah VS, Ernst S, Tang XX, Karp PH, Parker CP, Ostedgaard LS and Welsh MJ: Relationships among CFTR expression, HCO3- secretion, and host defense may inform gene- and cell-based cystic fibrosis therapies. Proc Natl Acad Sci USA. 113:5382–5387. 2016.PubMed/NCBI View Article : Google Scholar | |
Goodman BE and Percy WH: CFTR in cystic fibrosis and cholera: From membrane transport to clinical practice. Adv Physiol Educ. 29:75–82. 2005.PubMed/NCBI View Article : Google Scholar | |
Deachapunya C and O'Grady SM: Regulation of chloride secretion across porcine endometrial epithelial cells by prostaglandin E2. J Physiol. 508:31–47. 1998.PubMed/NCBI View Article : Google Scholar | |
Hoffmann EK, Lambert IH and Pedersen SF: Physiology of cell volume regulation in vertebrates. Physiol Rev. 89:193–277. 2009.PubMed/NCBI View Article : Google Scholar | |
Borowitz D and Gelfond D: Intestinal complications of cystic fibrosis. Curr Opin Pulm Med. 19:676–680. 2013.PubMed/NCBI View Article : Google Scholar | |
Kelly T and Buxbaum J: Gastrointestinal manifestations of cystic fibrosis. Dig Dis Sci. 60:1903–1913. 2015.PubMed/NCBI View Article : Google Scholar | |
Lavelle GM, White MM, Browne N, McElvaney NG and Reeves EP: Animal models of cystic fibrosis pathology: Phenotypic parallels and divergences. Biomed Res Int. 2016(5258727)2016.PubMed/NCBI View Article : Google Scholar | |
Li C, Dandridge KS, Di A, Marrs KL, Harris EL, Roy K, Jackson JS, Makarova NV, Fujiwara Y, Farrar PL, et al: Lysophosphatidic acid inhibits cholera toxin-induced secretory diarrhea through CFTR-dependent protein interactions. J Exp Med. 202:975–986. 2005.PubMed/NCBI View Article : Google Scholar | |
Rasmussen JE, Sheridan JT, Polk W, Davies CM and Tarran R: Cigarette smoke-induced Ca2+ release leads to cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction. J Biol Chem. 289:7671–7681. 2014.PubMed/NCBI View Article : Google Scholar | |
Patel W, Moore PJ, Sassano MF, Lopes-Pacheco M, Aleksandrov AA, Amaral MD, Tarran R and Gray MA: Increases in cytosolic Ca2+ induce dynamin- and calcineurin-dependent internalisation of CFTR. Cell Mol Life Sci. 76:977–994. 2019.PubMed/NCBI View Article : Google Scholar | |
He J, Yang X, Guo Y, Zhang F, Wan H, Sun X, Tuo B and Dong H: Ca2+ signaling in HCO3- secretion and protection of upper GI tract. Oncotarget. 8:102681–102689. 2017.PubMed/NCBI View Article : Google Scholar | |
Caputo A, Caci E, Ferrera L, Pedemonte N, Barsanti C, Sondo E, Pfeffer U, Ravazzolo R, Zegarra-Moran O and Galietta LJ: TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science. 322:590–594. 2008.PubMed/NCBI View Article : Google Scholar | |
Zimmermann H: Extracellular ATP and other nucleotides-ubiquitous triggers of intercellular messenger release. Purinergic Signal. 12:25–57. 2016.PubMed/NCBI View Article : Google Scholar | |
Beech DJ: Inhibitory effects of histamine and bradykinin on calcium current in smooth muscle cells isolated from guinea-pig ileum. J Physiol. 463:565–583. 1993.PubMed/NCBI View Article : Google Scholar | |
Morris AP, Scott JK, Ball JM, Zeng CQ, O'Neal WK and Estes MK: NSP4 elicits age-dependent diarrhea and Ca(2+)mediated I(-) influx into intestinal crypts of CF mice. Am J Physiol. 277:G431–G444. 1999.PubMed/NCBI View Article : Google Scholar | |
Yu K, Zhu J, Qu Z, Cui YY and Hartzell HC: Activation of the Ano1 (TMEM16A) chloride channel by calcium is not mediated by calmodulin. J Gen Physiol. 143:253–267. 2014.PubMed/NCBI View Article : Google Scholar | |
Kunzelmann K, Ousingsawat J, Cabrita I, Doušová T, Bähr A, Janda M, Schreiber R and Benedetto R: TMEM16A in cystic fibrosis: Activating or inhibiting? Front Pharmacol. 10(3)2019.PubMed/NCBI View Article : Google Scholar | |
Zhang F, Wan H, Yang X, He J, Lu C, Yang S, Tuo B and Dong H: Molecular mechanisms of caffeine-mediated intestinal epithelial ion transports. Br J Pharmacol. 176:1700–1716. 2019.PubMed/NCBI View Article : Google Scholar | |
Kunzelmann K and Mall M: Electrolyte transport in the mammalian colon: mechanisms and implications for disease. Physiol Rev. 82:245–289. 2002.PubMed/NCBI View Article : Google Scholar | |
Berg J, Yang H and Jan LY: Ca2+-activated Cl- channels at a glance. J Cell Sci. 125:1367–1371. 2012.PubMed/NCBI View Article : Google Scholar | |
Zsembery A, Strazzabosco M and Graf J: Ca2+-activated Cl- channels can substitute for CFTR in stimulation of pancreatic duct bicarbonate secretion. FASEB J. 14:2345–2356. 2000.PubMed/NCBI View Article : Google Scholar | |
Berkes J, Viswanathan VK, Savkovic SD and Hecht G: Intestinal epithelial responses to enteric pathogens: Effects on the tight junction barrier, ion transport, and inflammation. Gut. 52:439–451. 2003.PubMed/NCBI View Article : Google Scholar | |
Flemström G and Isenberg JI: Gastroduodenal mucosal alkaline secretion and mucosal protection. News Physiol Sci. 16:23–28. 2001.PubMed/NCBI View Article : Google Scholar | |
Simpson JE, Schweinfest CW, Shull GE, Gawenis LR, Walker NM, Boyle KT, Soleimani M and Clarke LL: PAT-1 (Slc26a6) is the predominant apical membrane Cl-/HCO3- exchanger in the upper villous epithelium of the murine duodenum. Am J Physiol Gastrointest Liver Physiol. 292:G1079–G1088. 2007.PubMed/NCBI View Article : Google Scholar | |
Xiao F, Yu Q, Li J, Johansson ME, Singh AK, Xia W, Riederer B, Engelhardt R, Montrose M, Soleimani M, et al: Slc26a3 deficiency is associated with loss of colonic HCO3 (-) secretion, absence of a firm mucus layer and barrier impairment in mice. Acta Physiol (Oxf). 211:161–175. 2014.PubMed/NCBI View Article : Google Scholar | |
Vidyasagar S, Barmeyer C, Geibel J, Binder HJ and Rajendran VM: Role of short-chain fatty acids in colonic HCO(3) secretion. Am J Physiol Gastrointest Liver Physiol. 288:G1217–G1226. 2005.PubMed/NCBI View Article : Google Scholar | |
Vidyasagar S, Rajendran VM and Binder HJ: Three distinct mechanisms of HCO3- secretion in rat distal colon. Am J Physiol Cell Physiol. 287:C612–C621. 2004.PubMed/NCBI View Article : Google Scholar | |
Singh AK, Riederer B, Chen M, Xiao F, Krabbenhöft A, Engelhardt R, Nylander O, Soleimani M and Seidler U: The switch of intestinal Slc26 exchangers from anion absorptive to HCOFormula secretory mode is dependent on CFTR anion channel function. Am J Physiol Cell Physiol. 298:C1057–C1065. 2010.PubMed/NCBI View Article : Google Scholar | |
Singh AK, Liu Y, Riederer B, Engelhardt R, Thakur BK, Soleimani M and Seidler U: Molecular transport machinery involved in orchestrating luminal acid-induced duodenal bicarbonate secretion in vivo. J Physiol. 591:5377–5391. 2013.PubMed/NCBI View Article : Google Scholar | |
Smith A, Contreras C, Ko KH, Chow J, Dong X, Tuo B, Zhang HH, Chen DB and Dong H: Gender-specific protection of estrogen against gastric acid-induced duodenal injury: Stimulation of duodenal mucosal bicarbonate secretion. Endocrinology. 149:4554–4566. 2008.PubMed/NCBI View Article : Google Scholar | |
Lamprecht G, Hsieh CJ, Lissner S, Nold L, Heil A, Gaco V, Schäfer J, Turner JR and Gregor M: Intestinal anion exchanger down-regulated in adenoma (DRA) is inhibited by intracellular calcium. J Biol Chem. 284:19744–19753. 2009.PubMed/NCBI View Article : Google Scholar | |
Feske S, Giltnane J, Dolmetsch R, Staudt LM and Rao A: Gene regulation mediated by calcium signals in T lymphocytes. Nat Immunol. 2:316–324. 2001.PubMed/NCBI View Article : Google Scholar | |
Rosenberg SS and Spitzer NC: Calcium signaling in neuronal development. Cold Spring Harb Perspect Biol. 3(a004259)2011.PubMed/NCBI View Article : Google Scholar | |
Stiber J, Hawkins A, Zhang ZS, Wang S, Burch J, Graham V, Ward CC, Seth M, Finch E, Malouf N, et al: STIM1 signalling controls store-operated calcium entry required for development and contractile function in skeletal muscle. Nat Cell Biol. 10:688–697. 2008.PubMed/NCBI View Article : Google Scholar | |
Prakriya M and Lewis RS: Store-operated calcium channels. Physiol Rev. 95:1383–1436. 2015.PubMed/NCBI View Article : Google Scholar | |
Baba Y, Hayashi K, Fujii Y, Mizushima A, Watarai H, Wakamori M, Numaga T, Mori Y, Iino M, Hikida M and Kurosaki T: Coupling of STIM1 to store-operated Ca2+ entry through its constitutive and inducible movement in the endoplasmic reticulum. Proc Natl Acad Sci USA. 103:16704–16709. 2006.PubMed/NCBI View Article : Google Scholar | |
Barr VA, Bernot KM, Srikanth S, Gwack Y, Balagopalan L, Regan CK, Helman DJ, Sommers CL, Oh-Hora M, Rao A and Samelson LE: Dynamic movement of the calcium sensor STIM1 and the calcium channel Orai1 in activated T-cells: Puncta and distal caps. Mol Biol Cell. 19:2802–2817. 2008.PubMed/NCBI View Article : Google Scholar | |
Smyth JT, Lemonnier L, Vazquez G, Bird GS and Putney JW Jr: Dissociation of regulated trafficking of TRPC3 channels to the plasma membrane from their activation by phospholipase C. J Biol Chem. 281:11712–11720. 2006.PubMed/NCBI View Article : Google Scholar | |
Mercer JC, Dehaven WI, Smyth JT, Wedel B, Boyles RR, Bird GS and Putney JW Jr: Large store-operated calcium selective currents due to co-expression of Orai1 or Orai2 with the intracellular calcium sensor, Stim1. J Biol Chem. 281:24979–24990. 2006.PubMed/NCBI View Article : Google Scholar | |
Lefkimmiatis K, Moyer MP, Curci S and Hofer AM: ‘cAMP sponge’: A buffer for cyclic adenosine 3', 5'-monophosphate. PLoS One. 4(e7649)2009.PubMed/NCBI View Article : Google Scholar | |
Rao JN, Rathor N, Zou T, Liu L, Xiao L, Yu TX, Cui YH and Wang JY: STIM1 translocation to the plasma membrane enhances intestinal epithelial restitution by inducing TRPC1-mediated Ca2+ signaling after wounding. Am J Physiol Cell Physiol. 299:C579–C588. 2010.PubMed/NCBI View Article : Google Scholar | |
Onodera K, Pouokam E and Diener M: STIM1-regulated Ca2+ influx across the apical and the basolateral membrane in colonic epithelium. J Membr Biol. 246:271–285. 2013.PubMed/NCBI View Article : Google Scholar | |
Smyth JT, DeHaven WI, Bird GS and Putney JW Jr: Role of the microtubule cytoskeleton in the function of the store-operated Ca2+ channel activator STIM1. J Cell Sci. 120:3762–3771. 2007.PubMed/NCBI View Article : Google Scholar | |
Seo MD, Enomoto M, Ishiyama N, Stathopulos PB and Ikura M: Structural insights into endoplasmic reticulum stored calcium regulation by inositol 1,4,5-trisphosphate and ryanodine receptors. Biochim Biophys Acta. 1853:1980–1991. 2015.PubMed/NCBI View Article : Google Scholar | |
Putney JW Jr: Capacitative calcium entry revisited. Cell Calcium. 11:611–624. 1990.PubMed/NCBI View Article : Google Scholar | |
Kocks S, Schultheiss G and Diener M: Ryanodine receptors and the mediation of Ca2+-dependent anion secretion across rat colon. Pflugers Arch. 445:390–397. 2002.PubMed/NCBI View Article : Google Scholar | |
Prole DL and Taylor CW: Inositol 1,4,5-trisphosphate receptors and their protein partners as signalling hubs. J Physiol. 594:2849–2866. 2016.PubMed/NCBI View Article : Google Scholar | |
Lefkimmiatis K, Srikanthan M, Maiellaro I, Moyer MP, Curci S and Hofer AM: Store-operated cyclic AMP signalling mediated by STIM1. Nat Cell Biol. 11:433–442. 2009.PubMed/NCBI View Article : Google Scholar | |
Nichols JM, Maiellaro I, Abi-Jaoude J, Curci S and Hofer AM: ‘Store-operated’ cAMP signaling contributes to Ca2+-activated Cl- secretion in T84 colonic cells. Am J Physiol Gastrointest Liver Physiol. 309:G670–G679. 2015.PubMed/NCBI View Article : Google Scholar | |
Julio-Kalajzić F, Villanueva S, Burgos J, Ojeda M, Cid LP, Jentsch TJ and Sepúlveda FV: K2P TASK-2 and KCNQ1-KCNE3 K+ channels are major players contributing to intestinal anion and fluid secretion. J Physiol. 596:393–407. 2018.PubMed/NCBI View Article : Google Scholar | |
Assaha DVM, Ueda A, Saneoka H, Al-Yahyai R and Yaish MW: The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Front Physiol. 8(509)2017.PubMed/NCBI View Article : Google Scholar | |
Wang J, Haanes KA and Novak I: Purinergic regulation of CFTR and Ca(2+)-activated Cl(-) channels and K(+) channels in human pancreatic duct epithelium. Am J Physiol Cell Physiol. 304:C673–C684. 2013.PubMed/NCBI View Article : Google Scholar | |
Joiner WJ, Basavappa S, Vidyasagar S, Nehrke K, Krishnan S, Binder HJ, Boulpaep EL and Rajendran VM: Active K+ secretion through multiple KCa-type channels and regulation by IKCa channels in rat proximal colon. Am J Physiol Gastrointest Liver Physiol. 285:G185–G196. 2003.PubMed/NCBI View Article : Google Scholar | |
Thompson-Vest N, Shimizu Y, Hunne B and Furness JB: The distribution of intermediate-conductance, calcium-activated, potassium (IK) channels in epithelial cells. J Anat. 208:219–229. 2006.PubMed/NCBI View Article : Google Scholar | |
McNamara B, Winter DC, Cuffe JE, O'Sullivan GC and Harvey BJ: Basolateral K+ channel involvement in forskolin-activated chloride secretion in human colon. J Physiol. 519:251–260. 1999.PubMed/NCBI View Article : Google Scholar | |
Du C, Chen S, Wan H, Chen L, Li L, Guo H, Tuo B and Dong H: Different functional roles for K+ channel subtypes in regulating small intestinal glucose and ion transport. Biol Open. 8(bio042200)2019.PubMed/NCBI View Article : Google Scholar | |
Dong H, Smith A, Hovaida M and Chow JY: Role of Ca2+-activated K+ channels in duodenal mucosal ion transport and bicarbonate secretion. Am J Physiol Gastrointest Liver Physiol. 291:G1120–G1128. 2006.PubMed/NCBI View Article : Google Scholar | |
Ottolia M and Philipson KD: NCX1: Mechanism of transport. Adv Exp Med Biol. 961:49–54. 2013.PubMed/NCBI View Article : Google Scholar | |
Brini M and Carafoli E: The plasma membrane Ca2+ ATPase and the plasma membrane sodium calcium exchanger cooperate in the regulation of cell calcium. Cold Spring Harb Perspect Biol. 3(a004168)2011.PubMed/NCBI View Article : Google Scholar | |
Lee SY and Kim JH: Mechanisms underlying presynaptic Ca2+ transient and vesicular glutamate release at a CNS nerve terminal during in vitro ischaemia. J Physiol. 593:2793–2806. 2015.PubMed/NCBI View Article : Google Scholar | |
Liao QS, Du Q, Lou J, Xu JY and Xie R: Roles of Na+/Ca2+ exchanger 1 in digestive system physiology and pathophysiology. World J Gastroenterol. 25:287–299. 2019.PubMed/NCBI View Article : Google Scholar | |
Seip G, Schultheiss G, Kocks SL and Diener M: Interaction between store-operated non-selective cation channels and the Na(+)-Ca(2+) exchanger during secretion in the rat colon. Exp Physiol. 86:461–468. 2001.PubMed/NCBI View Article : Google Scholar | |
Dong H, Sellers ZM, Smith A, Chow JY and Barrett KE: Na(+)/Ca(2+) exchange regulates Ca(2+)-dependent duodenal mucosal ion transport and HCO(3)(-) secretion in mice. Am J Physiol Gastrointest Liver Physiol. 288:G457–G465. 2005.PubMed/NCBI View Article : Google Scholar | |
Narayanan M, Reddy KM and Marsicano E: Peptic ulcer disease and Helicobacter pylori infection. Mo Med. 115:219–224. 2018.PubMed/NCBI | |
Iijima K, Kanno T, Koike T and Shimosegawa T: Helicobacter pylori-negative, non-steroidal anti-inflammatory drug: Negative idiopathic ulcers in Asia. World J Gastroenterol. 20:706–713. 2014.PubMed/NCBI View Article : Google Scholar | |
Goderska K, Agudo Pena S and Alarcon T: Helicobacter pylori treatment: Antibiotics or probiotics. Appl Microbiol Biotechnol. 102:1–7. 2018.PubMed/NCBI View Article : Google Scholar | |
Phan J, Benhammou JN and Pisegna JR: Gastric hypersecretory states: Investigation and management. Curr Treat Options Gastroenterol. 13:386–397. 2015.PubMed/NCBI View Article : Google Scholar | |
Mejia A and Kraft WK: Acid peptic diseases: Pharmacological approach to treatment. Expert Rev Clin Pharmacol. 2:295–314. 2009.PubMed/NCBI View Article : Google Scholar | |
Garcia MA, Yang N and Quinton PM: Normal mouse intestinal mucus release requires cystic fibrosis transmembrane regulator-dependent bicarbonate secretion. J Clin Invest. 119:2613–2622. 2009.PubMed/NCBI View Article : Google Scholar | |
Allen A and Flemström G: Gastroduodenal mucus bicarbonate barrier: Protection against acid and pepsin. Am J Physiol Cell Physiol. 288:C1–C19. 2005.PubMed/NCBI View Article : Google Scholar | |
Barkas F, Liberopoulos E, Kei A and Elisaf M: Electrolyte and acid-base disorders in inflammatory bowel disease. Ann Gastroenterol. 26:23–28. 2013.PubMed/NCBI | |
Hwang SJ, Basma N, Sanders KM and Ward SM: Effects of new-generation inhibitors of the calcium-activated chloride channel anoctamin 1 on slow waves in the gastrointestinal tract. Br J Pharmacol. 173:1339–1349. 2016.PubMed/NCBI View Article : Google Scholar | |
Findling R, Frishman W, Javed MT, Heffer S and Brandt L: Calcium channel blockers and the gastrointestinal tract. Am J Ther. 3:383–408. 1996.PubMed/NCBI View Article : Google Scholar | |
Zhang YZ and Li YY: Inflammatory bowel disease: Pathogenesis. World J Gastroenterol. 20:91–99. 2014.PubMed/NCBI View Article : Google Scholar | |
Tanoue T, Umesaki Y and Honda K: Immune responses to gut microbiota-commensals and pathogens. Gut Microbes. 1:224–233. 2010.PubMed/NCBI View Article : Google Scholar | |
Ghishan FK and Kiela PR: Epithelial transport in inflammatory bowel diseases. Inflamm Bowel Dis. 20:1099–1109. 2014.PubMed/NCBI View Article : Google Scholar | |
Lau KS, Nakashima O, Aalund GR, Hogarth L, Ujiie K, Yuen J and Star RA: TNF-alpha and IFN-gamma induce expression of nitric oxide synthase in cultured rat medullary interstitial cells. Am J Physiol. 269:F212–F217. 1995.PubMed/NCBI View Article : Google Scholar | |
Das S, Jayaratne R and Barrett KE: The role of ion transporters in the pathophysiology of infectious diarrhea. Cell Mol Gastroenterol Hepatol. 6:33–45. 2018.PubMed/NCBI View Article : Google Scholar | |
Manoharan P, Coon S, Baseler W, Sundaram S, Kekuda R and Sundaram U: Prostaglandins, not the leukotrienes, regulate Cl(-)/HCO(3)(-) exchange (DRA, SLC26A3) in villus cells in the chronically inflamed rabbit ileum. Biochim Biophys Acta. 1828:179–186. 2013.PubMed/NCBI View Article : Google Scholar | |
Yang D, Shcheynikov N, Zeng W, Ohana E, So I, Ando H, Mizutani A, Mikoshiba K and Muallem S: IRBIT coordinates epithelial fluid and HCO3- secretion by stimulating the transporters pNBC1 and CFTR in the murine pancreatic duct. J Clin Invest. 119:193–202. 2009.PubMed/NCBI View Article : Google Scholar | |
Lohi H, Kujala M, Kerkelä E, Saarialho-Kere U, Kestilä M and Kere J: Mapping of five new putative anion transporter genes in human and characterization of SLC26A6, a candidate gene for pancreatic anion exchanger. Genomics. 70:102–112. 2000.PubMed/NCBI View Article : Google Scholar | |
Anbazhagan AN, Priyamvada S, Alrefai WA and Dudeja PK: Pathophysiology of IBD associated diarrhea. Tissue Barriers. 6(e1463897)2018.PubMed/NCBI View Article : Google Scholar | |
Priyamvada S, Gomes R, Gill RK, Saksena S, Alrefai WA and Dudeja PK: Mechanisms underlying dysregulation of electrolyte absorption in inflammatory bowel disease-associated diarrhea. Inflamm Bowel Dis. 21:2926–2935. 2015.PubMed/NCBI View Article : Google Scholar | |
Priyamvada S, Anbazhagan AN, Gujral T, Borthakur A, Saksena S, Gill RK, Alrefai WA and Dudeja PK: All-trans-retinoic acid increases SLC26A3 DRA (Down-regulated in Adenoma) expression in intestinal epithelial cells via HNF-1β. J Biol Chem. 290:15066–15077. 2015.PubMed/NCBI View Article : Google Scholar | |
Seidler U and Nikolovska K: Slc26 Family of anion transporters in the gastrointestinal tract: Expression, function, regulation, and role in disease. Compr Physiol. 9:839–872. 2019.PubMed/NCBI View Article : Google Scholar |