Abnormal metabolic processes involved in the pathogenesis of non‑alcoholic fatty liver disease (Review)
- Authors:
- Mingmei Shao
- Zixiang Ye
- Yanhong Qin
- Tao Wu
-
Affiliations: Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China - Published online on: August 28, 2020 https://doi.org/10.3892/etm.2020.9154
- Article Number: 26
-
Copyright: © Shao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Vanni E, Bugianesi E, Kotronen A, De Minicis S, Yki-Järvinen H and Svegliati-Baroni G: From the metabolic syndrome to NAFLD or vice versa? Dig Liver Dis. 42:320–330. 2010.PubMed/NCBI View Article : Google Scholar | |
Rinella ME: Nonalcoholic fatty liver disease: A systematic review. JAMA. 313:2263–2273. 2015.PubMed/NCBI View Article : Google Scholar | |
Gawrieh S, Marion MC, Komorowski R, Wallace J, Charlton M, Kissebah A, Langefeld CD and Olivier M: Genetic variation in the peroxisome proliferator activated receptor-gamma gene is associated with histologically advanced NAFLD. Dig Dis Sci. 57:952–957. 2012.PubMed/NCBI View Article : Google Scholar | |
Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L and Wymer M: Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 64:73–84. 2016.PubMed/NCBI View Article : Google Scholar | |
Zhou J, Zhou F, Wang W, Zhang XJ, Ji YX, Zhang P, She ZG, Zhu L, Cai J and Li H: Epidemiological feature of NAFLD from 1999 to 2018 in China. Hepatology. 71:1851–1864. 2020.PubMed/NCBI View Article : Google Scholar | |
Marchisello S, Di Pino A, Scicali R, Urbano F, Piro S, Purrello F and Rabuazzo AM: Pathophysiological, molecular and therapeutic issues of nonalcoholic fatty liver disease: An overview. Int J Mol Sci. 20(1948)2019.PubMed/NCBI View Article : Google Scholar | |
Bessone F, Razori MV and Roma MG: Molecular pathways of nonalcoholic fatty liver disease development and progression. Cell Mol Life Sci. 76:99–128. 2019.PubMed/NCBI View Article : Google Scholar | |
Wasilewska N, Bobrus-Chociej A, Harasim-Symbor E, Tarasów E, Wojtkowska M, Chabowski A and Lebensztejn DM: Increased serum concentration of ceramides in obese children with nonalcoholic fatty liver disease. Lipids Health Dis. 17(216)2018.PubMed/NCBI View Article : Google Scholar | |
Jegatheesan P and De Bandt JP: Fructose and NAFLD: The multifaceted aspects of fructose metabolism. Nutrients. 9(230)2017.PubMed/NCBI View Article : Google Scholar | |
Chen L, Chen XW, Huang X, Song BL and Wang Y and Wang Y: Regulation of glucose and lipid metabolism in health and disease. Sci China Life Sci. 62:1420–1458. 2019.PubMed/NCBI View Article : Google Scholar | |
Kim SH, Kwon DY, Kwak JH, Lee S, Lee YH, Yun J, Son TG and Jung YS: Tunicamycin-induced ER stress is accompanied with oxidative stress via abrogation of sulfur amino acids metabolism in the liver. Int J Mol Sci. 19(4114)2018.PubMed/NCBI View Article : Google Scholar | |
Mouzaki M, Wang AY, Bandsma R, Comelli EM, Arendt BM, Zhang L, Fang S, Fischer SE, McGilvray LG and Allard JP: Bile acids and dysbiosis in non-alcoholic fatty liver disease. PLoS One. 11(e0151829)2016.PubMed/NCBI View Article : Google Scholar | |
Xu J, Sun W and Yang L: Association between iron metabolism and cognitive impairment in older non-alcoholic fatty liver disease individuals: A cross-sectional study in patients from a Chinese center. Medicine (Baltimore). 98(e18189)2019.PubMed/NCBI View Article : Google Scholar | |
Lim JS, Mietus-Snyder M, Valente A, Schwarz JM and Lustig RH: The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome. Nat Rev Gastroenterol Hepatol. 7:251–264. 2010.PubMed/NCBI View Article : Google Scholar | |
Jensen T, Abdelmalek MF, Sullivan S, Nadeau KJ, Green M, Roncal C, Nakagawa T, Kuwabara M, Sato Y, Kang DH, et al: Fructose and sugar: A major mediator of non-alcoholic fatty liver disease. J Hepatol. 68:1063–1075. 2018.PubMed/NCBI View Article : Google Scholar | |
Alwahsh SM and Gebhardt R: Dietary fructose as a risk factor for non-alcoholic fatty liver disease (NAFLD). Arch Toxicol. 91:1545–1563. 2017.PubMed/NCBI View Article : Google Scholar | |
Zhao S, Jang C, Liu J, Uehara K, Gilbert M, Izzo L, Zeng X, Trefely S, Fernandez S, Carrer A, et al: Dietary fructose feeds hepatic lipogenesis via microbiota-derived acetate. Nature. 579:586–591. 2020.PubMed/NCBI View Article : Google Scholar | |
Zhang S, Du T, Zhang J, Lu H, Lin X, Xie J, Yang Y and Yu X: The triglyceride and glucose index (TyG) is an effective biomarker to identify nonalcoholic fatty liver disease. Lipids Health Dis. 16(15)2017.PubMed/NCBI View Article : Google Scholar | |
Khan RS, Bril F, Cusi K and Newsome PN: Modulation of insulin resistance in nonalcoholic fatty liver disease. Hepatology. 70:711–724. 2019.PubMed/NCBI View Article : Google Scholar | |
Omar BA, Andersen B, Hald J, Raun K, Nishimura E and Ahrén B: Fibroblast growth factor 21 (FGF21) and glucagon-like peptide 1 contribute to diabetes resistance in glucagon receptor-deficient mice. Diabetes. 63:101–110. 2014.PubMed/NCBI View Article : Google Scholar | |
Patel V, Joharapurkar A, Kshirsagar S, Sutariya B, Patel M, Patel H, Pandey D, Patel D, Ranvir R, Kadam S, et al: Coagonist of GLP-1 and glucagon receptor ameliorates development of non-alcoholic fatty liver disease. Cardiovasc Hematol Agents Med Chem. 16:35–43. 2018.PubMed/NCBI View Article : Google Scholar | |
Dongiovanni P, Meroni M, Baselli GA, Bassani GA, Rametta R, Pietrelli A, Maggioni M, Facciotti F, Trunzo V, Badiali S, et al: Insulin resistance promotes lysyl oxidase like 2 induction and fibrosis accumulation in non-alcoholic fatty liver disease. Clin Sci (Lond). 131:1301–1315. 2017.PubMed/NCBI View Article : Google Scholar | |
Uygun A, Kadayifci A, Demirci H, Saglam M, Sakin YS, Ozturk K, Polat Z, Karslioglu Y and Bolu E: The effect of fatty pancreas on serum glucose parameters in patients with nonalcoholic steatohepatitis. Eur J Intern Med. 26:37–41. 2015.PubMed/NCBI View Article : Google Scholar | |
Fu D, Cui H and Zhang Y: Lack of ClC-2 alleviates high fat diet-induced insulin resistance and non-alcoholic fatty liver disease. Cell Physiol Biochem. 45:2187–2198. 2018.PubMed/NCBI View Article : Google Scholar | |
Kumashiro N, Erion DM, Zhang D, Kahn M, Beddow SA, Chu X, Still CD, Gerhard GS, Han X, Dziura J, et al: Cellular mechanism of insulin resistance in nonalcoholic fatty liver disease. Proc Natl Acad Sci USA. 108:16381–16385. 2011.PubMed/NCBI View Article : Google Scholar | |
Wu W, Bi Y, Tangsun Y, Yin W, Chen Y and Zhu D: Effects of transcription factor sterol regulatory element binding protein-1c in palmitate acid-induced L6 cells insulin resistance and its mechanism. Zhonghua Yi Xue Za Zhi. 95:611–615. 2015.PubMed/NCBI(In Chinese). | |
Nakajima K, Oda E and Kanda E: The association of serum sodium and chloride levels with blood pressure and estimated glomerular filtration rate. Blood Press. 25:51–57. 2016.PubMed/NCBI View Article : Google Scholar | |
Hong L, Xie ZZ, Du YH, Tang YB, Tao J, Lv XF, Zhou JG and Guan YY: Alteration of volume-regulated chloride channel during macrophage-derived foam cell formation in atherosclerosis. Atherosclerosis. 216:59–66. 2011.PubMed/NCBI View Article : Google Scholar | |
Trevaskis JL, Griffin PS, Wittmer C, Neuschwander-Tetri BA, Brunt EM, Dolman CS, Erickson MR, Napora J, Parkes DG and Roth JD: Glucagon-like peptide-1 receptor agonism improves metabolic, biochemical, and histopathological indices of nonalcoholic steatohepatitis in mice. Am J Physiol Gastrointest Liver Physiol. 302:G762–G772. 2012.PubMed/NCBI View Article : Google Scholar | |
Bernsmeier C, Meyer-Gerspach AC, Blaser LS, Jeker L, Steinert RE, Heim MH and Beglinger C: Glucose-induced glucagon-like Peptide 1 secretion is deficient in patients with non-alcoholic fatty liver disease. PLoS One. 9(e87488)2014.PubMed/NCBI View Article : Google Scholar | |
Chellali S, Boudiba A, Griene L and Koceir EA: Incretins-adipocytokines interactions in type 2 diabetic subjects with or without non-alcoholic fatty liver disease: Interest of GLP-1 (glucagon-like peptide-1) as a modulating biomarker. Ann Biol Clin (Paris). 77:261–271. 2019.PubMed/NCBI View Article : Google Scholar | |
Thompson AM and Trujillo JM: Dulaglutide: The newest GLP-1 receptor agonist for the management of type 2 diabetes. Ann Pharmacother. 49:351–359. 2015.PubMed/NCBI View Article : Google Scholar | |
Knop FK, Brønden A and Vilsbøll T: Exenatide: Pharmacokinetics, clinical use, and future directions. Expert Opin Pharmacother. 18:555–571. 2017.PubMed/NCBI View Article : Google Scholar | |
Dong Y, Lv Q, Li S, Wu Y, Li L, Li J, Zhang F, Sun X and Tong N: Efficacy and safety of glucagon-like peptide-1 receptor agonists in non-alcoholic fatty liver disease: A systematic review and meta-analysis. Clin Res Hepatol Gastroenterol. 41:284–295. 2017.PubMed/NCBI View Article : Google Scholar | |
Petit JM and Vergès B: GLP-1 receptor agonists in NAFLD. Diabetes Metab. 43 (Suppl 1):2S28–2S33. 2017.PubMed/NCBI View Article : Google Scholar | |
Ye DW, Rong XL, Xu AM and Guo J: Liver-adipose tissue crosstalk: A key player in the pathogenesis of glucolipid metabolic disease. Chin J Integr Med. 23:410–414. 2017.PubMed/NCBI View Article : Google Scholar | |
Li H, Dong K, Fang Q, Hou X, Zhou M, Bao Y, Xiang K, Xu A and Jia W: High serum level of fibroblast growth factor 21 is an independent predictor of non-alcoholic fatty liver disease: A 3-year prospective study in China. J Hepatol. 58:557–563. 2013.PubMed/NCBI View Article : Google Scholar | |
Zhou K and Cen J: The fatty liver index (FLI) and incident hypertension: A longitudinal study among Chinese population. Lipids Health Dis. 17(214)2018.PubMed/NCBI View Article : Google Scholar | |
Emanuelli B, Vienberg SG, Smyth G, Cheng C, Stanford KI, Arumugam M, Michael MD, Adams AC, Kharitonenkov A and Kahn CR: Interplay between FGF21 and insulin action in the liver regulates metabolism. J Clin Invest. 124:515–527. 2014.PubMed/NCBI View Article : Google Scholar | |
Tucker B, Li H, Long X, Rye KA and Ong KL: Fibroblast growth factor 21 in non-alcoholic fatty liver disease. Metabolism. 101(153994)2019.PubMed/NCBI View Article : Google Scholar | |
Dongiovanni P, Rametta R, Meroni M and Valenti L: The role of insulin resistance in nonalcoholic steatohepatitis and liver disease development-a potential therapeutic target? Expert Rev Gastroenterol Hepatol. 10:229–242. 2016.PubMed/NCBI View Article : Google Scholar | |
Angulo P, Kleiner DE, Dam-Larsen S, Adams LA, Bjornsson ES, Charatcharoenwitthaya P, Mills PR, Keach JC, Lafferty HD, Stahler A, et al: Liver fibrosis, but no other histologic features, is associated with long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterology. 149:389–397.e10. 2015.PubMed/NCBI View Article : Google Scholar | |
Grau-Bové X, Ruiz-Trillo I and Rodriguez-Pascual F: Origin and evolution of lysyl oxidases. Sci Rep. 5(10568)2015.PubMed/NCBI View Article : Google Scholar | |
Ikenaga N, Peng ZW, Vaid KA, Liu SB, Yoshida S, Sverdlov DY, Mikels-Vigdal A, Smith V, Schuppan D and Popov YV: Selective targeting of lysyl oxidase-like 2 (LOXL2) suppresses hepatic fibrosis progression and accelerates its reversal. Gut. 66:1697–1708. 2017.PubMed/NCBI View Article : Google Scholar | |
Williamson KD and Chapman RW: New therapeutic strategies for primary sclerosing cholangitis. Semin Liver Dis. 36:5–14. 2016.PubMed/NCBI View Article : Google Scholar | |
Ibrahim SH, Kohli R and Gores GJ: Mechanisms of lipotoxicity in NAFLD and clinical implications. J Pediatr Gastroenterol Nutr. 53:131–140. 2011.PubMed/NCBI View Article : Google Scholar | |
Ferramosca A and Zara V: Modulation of hepatic steatosis by dietary fatty acids. World J Gastroenterol. 20:1746–1755. 2014.PubMed/NCBI View Article : Google Scholar | |
Obara N, Fukushima K, Ueno Y, Wakui Y, Kimura O, Tamai K, Kakazu E, Inoue J, Kondo Y, Ogawa N, et al: Possible involvement and the mechanisms of excess trans-fatty acid consumption in severe NAFLD in mice. J Hepatol. 53:326–334. 2010.PubMed/NCBI View Article : Google Scholar | |
Dongiovanni P, Anstee QM and Valenti L: Genetic predisposition in NAFLD and NASH: Impact on severity of liver disease and response to treatment. Curr Pharm Des. 19:5219–5238. 2013.PubMed/NCBI View Article : Google Scholar | |
Orellana-Gavaldà JM, Herrero L, Malandrino MI, Pañeda A, Sol Rodríguez-Peña M, Petry H, Asins G, Van Deventer S, Hegardt FG and Serra D: Molecular therapy for obesity and diabetes based on a long-term increase in hepatic fatty-acid oxidation. Hepatology. 53:821–832. 2011.PubMed/NCBI View Article : Google Scholar | |
Gastaldelli A: Insulin resistance and reduced metabolic flexibility: Cause or consequence of NAFLD? Clin Sci (Lond). 131:2701–2704. 2017.PubMed/NCBI View Article : Google Scholar | |
Poulsen MK, Nellemann B, Bibby BM, Stødkilde-Jørgensen H, Pedersen SB, Grønbaek H and Nielsen S: No effect of resveratrol on VLDL-TG kinetics and insulin sensitivity in obese men with nonalcoholic fatty liver disease. Diabetes Obes Metab. 20:2504–2509. 2018.PubMed/NCBI View Article : Google Scholar | |
Assunção SNF, Sorte NCAB, Alves CAD, Mendes PSA, Alves CRB and Silva LR: Inflammatory cytokines and non-alcoholic fatty liver disease (NAFLD) in obese children and adolescents. Nutr Hosp. 35:78–83. 2018.PubMed/NCBI View Article : Google Scholar | |
Lopetuso LR, Mocci G, Marzo M, D'Aversa F, Rapaccini GL, Guidi L, Armuzzi A, Gasbarrini A and Papa A: Harmful effects and potential benefits of anti-tumor necrosis factor (TNF)-α on the liver. Int J Mol Sci. 19(2199)2018.PubMed/NCBI View Article : Google Scholar | |
Zahran WE, Salah El-Dien KA, Kamel PG and El-Sawaby AS: Efficacy of tumor necrosis factor and interleukin-10 analysis in the follow-up of nonalcoholic fatty liver disease progression. Indian J Clin Biochem. 28:141–146. 2013.PubMed/NCBI View Article : Google Scholar | |
Bocsan IC, Milaciu MV, Pop RM, Vesa SC, Ciumarnean L, Matei DM and Buzoianu AD: Cytokines genotype-phenotype correlation in nonalcoholic steatohepatitis. Oxid Med Cell Longev. 2017(4297206)2017.PubMed/NCBI View Article : Google Scholar | |
Yang R, Guan MJ, Zhao N, Li MJ and Zeng T: Roles of extrahepatic lipolysis and the disturbance of hepatic fatty acid metabolism in TNF-α-induced hepatic steatosis. Toxicology. 411:172–180. 2019.PubMed/NCBI View Article : Google Scholar | |
Jorge ASB, Andrade JMO, Paraíso AF, Jorge GCB, Silveira CM, de Souza LR, Santos EP, Guimaraes ALS, Santos SHS and De-Paula AMB: Body mass index and the visceral adipose tissue expression of IL-6 and TNF-alpha are associated with the morphological severity of non-alcoholic fatty liver disease in individuals with class III obesity. Obes Res Clin Pract. 12 (Suppl 2):S1–S8. 2018.PubMed/NCBI View Article : Google Scholar | |
Vida M, Gavito AL, Pavón FJ, Bautista D, Serrano A, Suarez J, Arrabal S, Decara J, Romero-Cuevas M, Rodríguez de Fonseca F and Baixeras E: Chronic administration of recombinant IL-6 upregulates lipogenic enzyme expression and aggravates high-fat-diet-induced steatosis in IL-6-deficient mice. Dis Model Mech. 8:721–731. 2015.PubMed/NCBI View Article : Google Scholar | |
Romeo S, Huang-Doran I, Baroni MG and Kotronen A: Unravelling the pathogenesis of fatty liver disease: Patatin-like phospholipase domain-containing 3 protein. Curr Opin Lipidol. 21:247–252. 2010.PubMed/NCBI View Article : Google Scholar | |
Romeo S, Kozlitina J, Xing C, Pertsemlidis A, Cox D, Pennacchio LA, Boerwinkle E, Cohen JC and Hobbs HH: Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet. 40:1461–1465. 2008.PubMed/NCBI View Article : Google Scholar | |
Wang X, Liu Z, Wang K, Wang Z, Sun X, Zhong L, Deng G, Song G, Sun B, Peng Z and Liu W: Additive effects of the risk alleles of PNPLA3 and TM6SF2 on non-alcoholic fatty liver disease (NAFLD) in a Chinese population. Front Genet. 7(140)2016.PubMed/NCBI View Article : Google Scholar | |
Sookoian S and Pirola CJ: Meta-analysis of the influence of I148M variant of patatin-like phospholipase domain containing 3 gene (PNPLA3) on the susceptibility and histological severity of nonalcoholic fatty liver disease. Hepatology. 53:1883–1894. 2011.PubMed/NCBI View Article : Google Scholar | |
Aragonès G, Auguet T, Armengol S, Berlanga A, Guiu-Jurado E, Aguilar C, Martínez S, Sabench F, Porras JA, Ruiz MD, et al: PNPLA3 expression is related to liver steatosis in morbidly obese women with non-alcoholic fatty liver disease. Int J Mol Sci. 17(630)2016.PubMed/NCBI View Article : Google Scholar | |
Zhang L, You W, Zhang H, Peng R, Zhu Q, Yao A, Li X, Zhou Y, Wang X, Pu L and Wu J: PNPLA3 polymorphisms (rs738409) and non-alcoholic fatty liver disease risk and related phenotypes: A meta-analysis. J Gastroenterol Hepatol. 30:821–829. 2015.PubMed/NCBI View Article : Google Scholar | |
Rossi C, Marzano V, Consalvo A, Zucchelli M, Levi Mortera S, Casagrande V, Mavilio M, Sacchetta P, Federici M, Menghini R, et al: Proteomic and metabolomic characterization of streptozotocin-induced diabetic nephropathy in TIMP3-deficient mice. Acta Diabetol. 55:121–129. 2018.PubMed/NCBI View Article : Google Scholar | |
Pawlak M, Lefebvre P and Staels B: Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J Hepatol. 62:720–733. 2015.PubMed/NCBI View Article : Google Scholar | |
Manzano León N, Torres N and Tovar AR: Mechanism of action of sterol regulatory element binding proteins (SREBPs) in cholesterol and fatty-acid biosynthesis. Rev Invest Clin. 54:145–153. 2002.PubMed/NCBI(In Spanish). | |
Ziamajidi N, Khaghani S, Hassanzadeh G, Vardasbi S, Ahmadian S, Nowrouzi A, Ghaffari SM and Abdirad A: Amelioration by chicory seed extract of diabetes- and oleic acid-induced non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH) via modulation of PPARα and SREBP-1. Food Chem Toxicol. 58:198–209. 2013.PubMed/NCBI View Article : Google Scholar | |
Park HS, Jeon BH, Woo SH, Leem J, Jang JE, Cho MS, Park IS, Lee KU and Koh EH: Time-dependent changes in lipid metabolism in mice with methionine choline deficiency-induced fatty liver disease. Mol Cells. 32:571–577. 2011.PubMed/NCBI View Article : Google Scholar | |
Van Rooyen DM and Farrell GC: SREBP-2: A link between insulin resistance, hepatic cholesterol, and inflammation in NASH. J Gastroenterol Hepatol. 26:789–792. 2011.PubMed/NCBI View Article : Google Scholar | |
Adolph TE, Grander C, Grabherr F and Tilg H: Adipokines and non-alcoholic fatty liver Disease: Multiple interactions. Int J Mol Sci. 18(1649)2017.PubMed/NCBI View Article : Google Scholar | |
Gatselis NK, Ntaios G, Makaritsis K and Dalekos GN: Adiponect in: A key playmaker adipocytokine in non-alcoholic fatty liver disease. Clin Exp Med. 14:121–131. 2014.PubMed/NCBI View Article : Google Scholar | |
Ahmad A, Ali T, Kim MW, Khan A, Jo MH, Rehman SU, Khan MS, Abid NB, Khan M, Ullah R, et al: Adiponectin homolog novel osmotin protects obesity/diabetes-induced NAFLD by upregulating AdipoRs/PPARα signaling in ob/ob and db/db transgenic mouse models. Metabolism. 90:31–43. 2019.PubMed/NCBI View Article : Google Scholar | |
Navekar R, Rafraf M, Ghaffari A, Asghari-Jafarabadi M and Khoshbaten M: Turmeric supplementation improves serum glucose indices and leptin levels in patients with nonalcoholic fatty liver diseases. J Am Coll Nutr. 36:261–267. 2017.PubMed/NCBI View Article : Google Scholar | |
Perfield JW II, Ortinau LC, Pickering RT, Ruebel ML, Meers GM and Rector RS: Altered hepatic lipid metabolism contributes to nonalcoholic fatty liver disease in leptin-deficient Ob/Ob mice. J Obes. 2013(296537)2013.PubMed/NCBI View Article : Google Scholar | |
Zelber-Sagi S, Lotan R, Shlomai A, Webb M, Harrari G, Buch A, Nitzan Kaluski D, Halpern Z and Oren R: Predictors for incidence and remission of NAFLD in the general population during a seven-year prospective follow-up. J Hepatol. 56:1145–1151. 2012.PubMed/NCBI View Article : Google Scholar | |
Polyzos SA, Aronis KN, Kountouras J, Raptis DD, Vasiloglou MF and Mantzoros CS: Circulating leptin in non-alcoholic fatty liver disease: A systematic review and meta-analysis. Diabetologia. 59:30–43. 2016.PubMed/NCBI View Article : Google Scholar | |
Polyzos SA, Kountouras J and Mantzoros CS: Leptin in nonalcoholic fatty liver disease: A narrative review. Metabolism. 64:60–78. 2015.PubMed/NCBI View Article : Google Scholar | |
Liu Y, Qiu DK and Ma X: Liver X receptors bridge hepatic lipid metabolism and inflammation. J Dig Dis. 13:69–74. 2012.PubMed/NCBI View Article : Google Scholar | |
Rong X, Albert CJ, Hong C, Duerr MA, Chamberlain BT, Tarling EJ, Ito A, Gao J, Wang B, Edwards PA, et al: LXRs regulate ER stress and inflammation through dynamic modulation of membrane phospholipid composition. Cell Metab. 18:685–697. 2013.PubMed/NCBI View Article : Google Scholar | |
Lima-Cabello E, García-Mediavilla MV, Miquilena-Colina ME, Vargas-Castrillón J, Lozano-Rodríguez T, Fernández-Bermejo M, Olcoz JL, González-Gallego J, García-Monzón C and Sánchez-Campos S: Enhanced expression of pro-inflammatory mediators and liver X-receptor-regulated lipogenic genes in non-alcoholic fatty liver disease and hepatitis C. Clin Sci (Lond). 120:239–250. 2011.PubMed/NCBI View Article : Google Scholar | |
Ni M, Zhang B, Zhao J, Feng Q, Peng J, Hu Y and Zhao Y: Biological mechanisms and related natural modulators of liver X receptor in nonalcoholic fatty liver disease. Biomed Pharmacother. 113(108778)2019.PubMed/NCBI View Article : Google Scholar | |
Tsai TH, Chen E, Li L, Saha P, Lee HJ, Huang LS, Shelness GS, Chan L and Chang BHJ: The constitutive lipid droplet protein PLIN2 regulates autophagy in liver. Autophagy. 13:1130–1144. 2017.PubMed/NCBI View Article : Google Scholar | |
Imai Y, Boyle S, Varela GM, Caron E, Yin X, Dhir R, Dhir R, Graham MJ and Ahima RS: Effects of perilipin 2 antisense oligonucleotide treatment on hepatic lipid metabolism and gene expression. Physiol Genomics. 44:1125–1131. 2012.PubMed/NCBI View Article : Google Scholar | |
Sherriff JL, O'Sullivan TA, Properzi C, Oddo J-L and Adams LA: Choline, its potential role in nonalcoholic fatty liver disease, and the case for human and bacterial genes. Adv Nutr. 7:5–13. 2016.PubMed/NCBI View Article : Google Scholar | |
Michel V, Singh RK and Bakovic M: The impact of choline availability on muscle lipid metabolism. Food Funct. 2:53–62. 2011.PubMed/NCBI View Article : Google Scholar | |
Suk KT and Kim DJ: Gut microbiota: Novel therapeutic target for nonalcoholic fatty liver disease. Expert Rev Gastroenterol Hepatol. 13:193–204. 2019.PubMed/NCBI View Article : Google Scholar | |
Pradhan-Sundd T, Vats R, Russell JO, Singh S, Michael AA, Molina L, Kakar S, Cornuet P, Poddar M, Watkins SC, et al: Dysregulated bile transporters and impaired tight junctions during chronic liver injury in mice. Gastroenterology. 155:1218–1232.e24. 2018.PubMed/NCBI View Article : Google Scholar | |
Sookoian S, Castaño GO, Scian R, Fernández Gianotti T, Dopazo H, Rohr C, Gaj G, San Martino J, Sevic I, Flichman D and Pirola CJ: Serum aminotransferases in nonalcoholic fatty liver disease are a signature of liver metabolic perturbations at the amino acid and Krebs cycle level. Am J Clin Nutr. 103:422–434. 2016.PubMed/NCBI View Article : Google Scholar | |
Lake AD, Novak P, Shipkova P, Aranibar N, Robertson DG, Reily MD, Lehman-McKeeman LD, Vaillancourt RR and Cherrington NJ: Branched chain amino acid metabolism profiles in progressive human nonalcoholic fatty liver disease. Amino Acids. 47:603–615. 2015.PubMed/NCBI View Article : Google Scholar | |
Cheng S, Wiklund P, Autio R, Borra R, Ojanen X, Xu L, Törmäkangas T and Alen M: Adipose tissue dysfunction and altered systemic amino acid metabolism are associated with non-alcoholic fatty liver disease. PLoS One. 10(e0138889)2015.PubMed/NCBI View Article : Google Scholar | |
Haufe S, Witt H, Engeli S, Kaminski J, Utz W, Fuhrmann JC, Rein D, Schulz-Menger J, Luft FC, Boschmann M and Jordan J: Branched-chain and aromatic amino acids, insulin resistance and liver specific ectopic fat storage in overweight to obese subjects. Nutr Metab Cardiovasc Dis. 26:637–642. 2016.PubMed/NCBI View Article : Google Scholar | |
van den Berg EH, Flores-Guerrero JL, Gruppen EG, de Borst MH, Wolak-Dinsmore J, Connelly MA, Bakker SJL and Dullaart RPF: Non-alcoholic fatty liver disease and risk of incident type 2 diabetes: Role of circulating branched-chain amino acids. Nutrients. 11(705)2019.PubMed/NCBI View Article : Google Scholar | |
Zhang F, Zhao S, Yan W, Xia Y, Chen X, Wang W, Zhang J, Gao C, Peng C, Yan F, et al: Branched chain amino acids cause liver injury in obese/diabetic mice by promoting adipocyte lipolysis and inhibiting hepatic autophagy. EBioMedicine. 13:157–167. 2016.PubMed/NCBI View Article : Google Scholar | |
Li T, Geng L, Chen X, Miskowiec M, Li X and Dong B: Branched-chain amino acids alleviate nonalcoholic steatohepatitis in rats. Appl Physiol Nutr Metab. 38:836–843. 2013.PubMed/NCBI View Article : Google Scholar | |
Ra SG, Miyazaki T, Kojima R, Komine S, Ishikura K, Kawanaka K, Honda A, Matsuzaki Y and Ohmori H: Effect of BCAA supplement timing on exercise-induced muscle soreness and damage: A pilot placebo-controlled double-blind study. J Sports Med Phys Fitness. 58:1582–1591. 2018.PubMed/NCBI View Article : Google Scholar | |
Zarfeshani A, Ngo S and Sheppard AM: Leucine alters hepatic glucose/lipid homeostasis via the myostatin-AMP-activated protein kinase pathway-potential implications for nonalcoholic fatty liver disease. Clin Epigenetics. 6(27)2014.PubMed/NCBI View Article : Google Scholar | |
Celinski K, Konturek PC, Slomka M, Cichoz-Lach H, Brzozowski T, Konturek SJ and Korolczuk A: Effects of treatment with melatonin and tryptophan on liver enzymes, parameters of fat metabolism and plasma levels of cytokines in patients with non-alcoholic fatty liver disease-14 months follow up. J Physiol Pharmacol. 65:75–82. 2014.PubMed/NCBI | |
Chen Y, Li C, Liu L, Guo F, Li S, Huang L, Sun C and Feng R: Serum metabonomics of NAFLD plus T2DM based on liquid chromatography-mass spectrometry. Clin Biochem. 49:962–966. 2016.PubMed/NCBI View Article : Google Scholar | |
Jin R, Banton S, Tran VT, Konomi JV, Li S, Jones DP and Vos MB: Amino acid metabolism is altered in adolescents with nonalcoholic fatty liver disease-an untargeted, high resolution metabolomics study. J Pediatr. 172:14–19.e5. 2016.PubMed/NCBI View Article : Google Scholar | |
Gaggini M, Carli F, Rosso C, Buzzigoli E, Marietti M, Della Latta V, Ciociaro D, Abate ML, Gambino R, Cassader M, et al: Altered amino acid concentrations in NAFLD: Impact of obesity and insulin resistance. Hepatology. 67:145–158. 2018.PubMed/NCBI View Article : Google Scholar | |
Stojanović M, Todorović D, Šćepanović L, Mitrović D, Borozan S, Dragutinović V, Labudović-Borović M, Krstić D, Čolović M and Djuric D: Subchronic methionine load induces oxidative stress and provokes biochemical and histological changes in the rat liver tissue. Mol Cell Biochem. 448:43–50. 2018.PubMed/NCBI View Article : Google Scholar | |
Dai H, Wang W, Tang X, Chen R, Chen Z, Lu Y and Yuan H: Association between homocysteine and non-alcoholic fatty liver disease in Chinese adults: A cross-sectional study. Nutr J. 15(102)2016.PubMed/NCBI View Article : Google Scholar | |
Pacana T, Cazanave S, Verdianelli A, Patel V, Min HK, Mirshahi F, Quinlivan E and Sanyal AJ: Dysregulated hepatic methionine metabolism drives homocysteine elevation in diet-induced nonalcoholic fatty liver disease. PLoS One. 10(e0136822)2015.PubMed/NCBI View Article : Google Scholar | |
de Carvalho SC, Muniz MT, Siqueira MD, Siqueira ER, Gomes AV, Silva KA, Bezerra LC, D'Almeida V, de Oliveira CP and Pereira LM: Plasmatic higher levels of homocysteine in non-alcoholic fatty liver disease (NAFLD). Nutr J. 12(37)2013.PubMed/NCBI View Article : Google Scholar | |
Abu-Serie MM, El-Gamal BA, El-Kersh MA and El-Saadani MA: Investigation into the antioxidant role of arginine in the treatment and the protection for intralipid-induced non-alcoholic steatohepatitis. Lipids Health Dis. 14(128)2015.PubMed/NCBI View Article : Google Scholar | |
Dogru T, Genc H, Tapan S, Ercin CN, Ors F, Aslan F, Kara M, Sertoglu E, Bagci S, Kurt I and Sonmez A: Elevated asymmetric dimethylarginine in plasma: An early marker for endothelial dysfunction in non-alcoholic fatty liver disease? Diabetes Res Clin Pract. 96:47–52. 2012.PubMed/NCBI View Article : Google Scholar | |
Voloshin I, Hahn-Obercyger M, Anavi S and Tirosh O: L-arginine conjugates of bile acids-a possible treatment for non-alcoholic fatty liver disease. Lipids Health Dis. 13(69)2014.PubMed/NCBI View Article : Google Scholar | |
Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, Charlton M and Sanyal AJ: American Gastroenterological Association; American Association for the Study of Liver Diseases; American College of Gastroenterologyh: The diagnosis and management of non-alcoholic fatty liver disease: Practice guideline by the American gastroenterological association, American association for the study of liver diseases, and American college of gastroenterology. Gastroenterology. 142:1592–1609. 2012.PubMed/NCBI View Article : Google Scholar | |
Chiang JYL and Ferrell JM: Bile acid metabolism in liver pathobiology. Gene Expr. 18:71–87. 2018.PubMed/NCBI View Article : Google Scholar | |
Tanaka N, Matsubara T, Krausz KW, Patterson AD and Gonzalez FJ: Disruption of phospholipid and bile acid homeostasis in mice with nonalcoholic steatohepatitis. Hepatology. 56:118–129. 2012.PubMed/NCBI View Article : Google Scholar | |
Ferslew BC, Johnston CK, Tsakalozou E, Bridges AS, Paine MF, Jia W, Stewart PW, Barritt AS IV and Brouwer KL: Altered morphine glucuronide and bile acid disposition in patients with nonalcoholic steatohepatitis. Clin Pharmacol Ther. 97:419–427. 2015.PubMed/NCBI View Article : Google Scholar | |
Lake AD, Novak P, Shipkova P, Aranibar N, Robertson D, Reily MD, Lu Z, Lehman-McKeeman LD and Cherrington NJ: Decreased hepatotoxic bile acid composition and altered synthesis in progressive human nonalcoholic fatty liver disease. Toxicol Appl Pharmacol. 268:132–140. 2013.PubMed/NCBI View Article : Google Scholar | |
Evans RM and Mangelsdorf DJ: Nuclear receptors, RXR, and the big bang. Cell. 157:255–266. 2014.PubMed/NCBI View Article : Google Scholar | |
Okushin K, Tsutsumi T, Enooku K, Fujinaga H, Kado A, Shibahara J, Fukayama M, Moriya K, Yotsuyanagi H and Koike K: The intrahepatic expression levels of bile acid transporters are inversely correlated with the histological progression of nonalcoholic fatty liver disease. J Gastroenterol. 51:808–818. 2016.PubMed/NCBI View Article : Google Scholar | |
Schiöth HB, Boström A, Murphy SK, Erhart W, Hampe J, Moylan C and Mwinyi J: A targeted analysis reveals relevant shifts in the methylation and transcription of genes responsible for bile acid homeostasis and drug metabolism in non-alcoholic fatty liver disease. BMC Genomics. 17(462)2016.PubMed/NCBI View Article : Google Scholar | |
Kim SG, Kim BK, Kim K and Fang S: Bile acid nuclear receptor farnesoid X receptor: Therapeutic target for nonalcoholic fatty liver disease. Endocrinol Metab (Seoul). 31:500–504. 2016.PubMed/NCBI View Article : Google Scholar | |
Martin IV, Schmitt J, Minkenberg A, Mertens JC, Stieger B, Mullhaupt B and Geier A: Bile acid retention and activation of endogenous hepatic farnesoid-X-receptor in the pathogenesis of fatty liver disease in ob/ob-mice. Biol Chem. 391:1441–1449. 2010.PubMed/NCBI View Article : Google Scholar | |
Toyoda Y, Takada T, Yamanashi Y and Suzuki H: Pathophysiological importance of bile cholesterol reabsorption: Hepatic NPC1L1-exacerbated steatosis and decreasing VLDL-TG secretion in mice fed a high-fat diet. Lipids Health Dis. 18(234)2019.PubMed/NCBI View Article : Google Scholar | |
Yoshida M: Novel role of NPC1L1 in the regulation of hepatic metabolism: Potential contribution of ezetimibe in NAFLD/NASH treatment. Curr Vasc Pharmacol. 9:121–123. 2011.PubMed/NCBI View Article : Google Scholar | |
Nomura M, Ishii H, Kawakami A and Yoshida M: Inhibition of hepatic Niemann-Pick C1-like 1 improves hepatic insulin resistance. Am J Physiol Endocrinol Metab. 297:E1030–E1038. 2009.PubMed/NCBI View Article : Google Scholar | |
Aguilar-Olivos NE, Carrillo-Córdova D, Oria-Hernández J, Sánchez-Valle V, Ponciano-Rodríguez G, Ramírez-Jaramillo M, Chablé-Montero F, Chávez-Tapia NC, Uribe M and Méndez-Sánchez N: The nuclear receptor FXR, but not LXR, up-regulates bile acid transporter expression in non-alcoholic fatty liver disease. Ann Hepatol. 14:487–493. 2015.PubMed/NCBI | |
Bechmann LP, Kocabayoglu P, Sowa JP, Sydor S, Best J, Schlattjan M, Beilfuss A, Schmitt J, Hannivoort RA, Kilicarslan A, et al: Free fatty acids repress small heterodimer partner (SHP) activation and adiponectin counteracts bile acid-induced liver injury in superobese patients with nonalcoholic steatohepatitis. Hepatology. 57:1394–1406. 2013.PubMed/NCBI View Article : Google Scholar | |
Rao A, Kosters A, Mells JE, Zhang W, Setchell KD, Amanso AM, Wynn GM, Xu T, Keller BT, Yin H, et al: Inhibition of ileal bile acid uptake protects against nonalcoholic fatty liver disease in high-fat diet-fed mice. Sci Transl Med. 8(357ra122)2016.PubMed/NCBI View Article : Google Scholar | |
Chassaing B, Etienne-Mesmin L and Gewirtz AT: Microbiota-liver axis in hepatic disease. Hepatology. 59:328–339. 2014.PubMed/NCBI View Article : Google Scholar | |
Houghton D, Stewart CJ, Day CP and Trenell M: Gut microbiota and lifestyle interventions in NAFLD. Int J Mol Sci. 17(447)2016.PubMed/NCBI View Article : Google Scholar | |
Castaño-Rodríguez N, Mitchell HM and Kaakoush NO: NAFLD, Helicobacter species and the intestinal microbiome. Best Pract Res Clin Gastroenterol. 31:657–668. 2017.PubMed/NCBI View Article : Google Scholar | |
Chen YM, Liu Y, Zhou RF, Chen XL, Wang C, Tan XY, Wang LJ, Zheng RD, Zhang HW, Ling WH, et al: Associations of gut-flora-dependent metabolite trimethylamine-N-oxide, betaine and choline with non-alcoholic fatty liver disease in adults. Sci Rep. 6(19076)2016.PubMed/NCBI View Article : Google Scholar | |
Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, Britt EB, Fu X, Wu Y, Li L, et al: Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 19:576–585. 2013.PubMed/NCBI View Article : Google Scholar | |
Datz C, Müller E and Aigner E: Iron overload and non-alcoholic fatty liver disease. Minerva Endocrinol. 42:173–183. 2017.PubMed/NCBI View Article : Google Scholar | |
Moya D, Baker SS, Liu W, Garrick M, Kozielski R, Baker RD and Zhu L: Novel pathway for iron deficiency in pediatric non-alcoholic steatohepatitis. Clin Nutr. 34:549–556. 2015.PubMed/NCBI View Article : Google Scholar | |
Tsuchiya H, Ashla AA, Hoshikawa Y, Matsumi Y, Kanki K, Enjoji M, Momosaki S, Nakamuta M, Taketomi A, Maehara Y, et al: Iron state in association with retinoid metabolism in non-alcoholic fatty liver disease. Hepatol Res. 40:1227–1238. 2010.PubMed/NCBI View Article : Google Scholar | |
Handa P, Morgan-Stevenson V, Maliken BD, Nelson JE, Washington S, Westerman M, Yeh MM and Kowdley KV: Iron overload results in hepatic oxidative stress, immune cell activation, and hepatocellular ballooning injury, leading to nonalcoholic steatohepatitis in genetically obese mice. Am J Physiol Gastrointest Liver Physiol. 310:G117–G127. 2016.PubMed/NCBI View Article : Google Scholar | |
O'Brien J and Powell LW: Non-alcoholic fatty liver disease: Is iron relevant? Hepatol Int. 6:332–341. 2012.PubMed/NCBI View Article : Google Scholar | |
Tan TC, Crawford DH, Jaskowski LA, Subramaniam VN, Clouston AD, Crane DI, Bridle KR, Anderson GJ and Fletcher LM: Excess iron modulates endoplasmic reticulum stress-associated pathways in a mouse model of alcohol and high-fat diet-induced liver injury. Lab Invest. 93:1295–1312. 2013.PubMed/NCBI View Article : Google Scholar | |
Fujita N and Takei Y: Iron overload in nonalcoholic steatohepatitis. Adv Clin Chem. 55:105–132. 2011.PubMed/NCBI View Article : Google Scholar | |
Uysal S, Armutcu F, Aydogan T, Akin K, Ikizek M and Yigitoglu MR: Some inflammatory cytokine levels, iron metabolism and oxidan stress markers in subjects with nonalcoholic steatohepatitis. Clin Biochem. 44:1375–1379. 2011.PubMed/NCBI View Article : Google Scholar | |
Aigner E, Weiss G and Datz C: Dysregulation of iron and copper homeostasis in nonalcoholic fatty liver. World J Hepatol. 7:177–188. 2015.PubMed/NCBI View Article : Google Scholar | |
Hagström H, Nasr P, Bottai M, Ekstedt M, Kechagias S, Hultcrantz R and Stål P: Elevated serum ferritin is associated with increased mortality in non-alcoholic fatty liver disease after 16 years of follow-up. Liver Int. 36:1688–1695. 2016.PubMed/NCBI View Article : Google Scholar | |
Ghamarchehreh ME, Jonaidi-Jafari N, Bigdeli M, Khedmat H and Saburi A: Iron status and metabolic syndrome in patients with non-alcoholic fatty liver disease. Middle East J Dig Dis. 8:31–38. 2016.PubMed/NCBI View Article : Google Scholar | |
Iwasa M, Hara N, Iwata K, Ishidome M, Sugimoto R, Tanaka H, Fujita N, Kobayashi Y and Takei Y: Restriction of calorie and iron intake results in reduction of visceral fat and serum alanine aminotransferase and ferritin levels in patients with chronic liver disease. Hepatol Res. 40:1188–1194. 2010.PubMed/NCBI View Article : Google Scholar | |
Kowdley KV, Belt P, Wilson LA, Yeh MM, Neuschwander-Tetri BA, Chalasani N, Sanyal AJ and Nelson JE: NASH Clinical Research Network. Serum ferritin is an independent predictor of histologic severity and advanced fibrosis in patients with nonalcoholic fatty liver disease. Hepatology. 55:77–85. 2012.PubMed/NCBI View Article : Google Scholar | |
Valenti L, Dongiovanni P and Fargion S: Diagnostic and therapeutic implications of the association between ferritin level and severity of nonalcoholic fatty liver disease. World J Gastroenterol. 18:3782–3786. 2012.PubMed/NCBI View Article : Google Scholar | |
Boga S, Alkim H, Alkim C, Koksal AR, Bayram M, Yilmaz Ozguven MB and Tekin Neijmann S: The relationship of serum hemojuvelin and hepcidin levels with iron overload in nonalcoholic fatty liver disease. J Gastrointestin Liver Dis. 24:293–300. 2015.PubMed/NCBI View Article : Google Scholar | |
Tsuchiya H, Ebata Y, Sakabe T, Hama S, Kogure K and Shiota G: High-fat, high-fructose diet induces hepatic iron overload via a hepcidin-independent mechanism prior to the onset of liver steatosis and insulin resistance in mice. Metabolism. 62:62–69. 2013.PubMed/NCBI View Article : Google Scholar | |
Valenti L, Swinkels DW, Burdick L, Dongiovanni P, Tjalsma H, Motta BM, Bertelli C, Fatta E, Bignamini D, Rametta R, et al: Serum ferritin levels are associated with vascular damage in patients with nonalcoholic fatty liver disease. Nutr Metab Cardiovasc Dis. 21:568–575. 2011.PubMed/NCBI View Article : Google Scholar |