1
|
Teo LL, Cannell T, Babu-Narayan SV, Hughes
M and Mohiaddin RH: Prevalence of associated cardiovascular
abnormalities in 500 patients with aortic coarctation referred for
cardiovascular magnetic resonance imaging to a tertiary center.
Pediatr Cardiol. 32:1120–1127. 2011.PubMed/NCBI View Article : Google Scholar
|
2
|
Sinning C, Zengin E, Kozlik-Feldmann R,
Blankenberg S, Rickers C, von Kodolitsch Y and Girdauskas E:
Bicuspid aortic valve and aortic coarctation in congenital heart
disease-important aspects for treatment with focus on aortic
vasculopathy. Cardiovasc Diagn Ther. 8:780–788. 2018.PubMed/NCBI View Article : Google Scholar
|
3
|
Preventza O, Livesay JJ, Cooley DA,
Krajcer Z, Cheong BY and Coselli JS: Coarctation-associated
aneurysms: A localized disease or diffuse aortopathy. Ann Thorac
Surg. 95:1961–1967. 2013.PubMed/NCBI View Article : Google Scholar
|
4
|
Webb G: Treatment of coarctation and late
complications in the adult. Semin Thorac Cardiovasc Surg.
17:139–142. 2005.PubMed/NCBI View Article : Google Scholar
|
5
|
Yin Z, Yang JR, Wei YS, Liang BL, Wei YB,
Zhou KQ, Wang Z, Yan B and Gao YL: Ischemia-reperfusion injury in
an aortic dissection patient. Am J Emerg Med. 33:987.e5–e6.
2015.PubMed/NCBI View Article : Google Scholar
|
6
|
Bambul Heck P, Pabst von Ohain J,
Kaemmerer H, Ewert P and Hager A: Survival and cardiovascular
events after coarctation-repair in long-term follow-up (COAFU):
Predictive value of clinical variables. Int J Cardiol. 228:347–351.
2017.PubMed/NCBI View Article : Google Scholar
|
7
|
Jashari H, Lannering K, Ibrahimi P, Djekic
D, Mellander M, Rydberg A and Henein MY: Persistent reduced
myocardial deformation in neonates after CoA repair. Int J Cardiol.
221:886–891. 2016.PubMed/NCBI View Article : Google Scholar
|
8
|
Oliver JM, Gallego P, Gonzalez A, Aroca A,
Bret M and Mesa JM: Risk factors for aortic complications in adults
with coarctation of the aorta. J Am Coll Cardiol. 44:1641–1647.
2004.PubMed/NCBI View Article : Google Scholar
|
9
|
Keshavarz-Motamed Z, Garcia J and Kadem L:
Fluid dynamics of coarctation of the aorta and effect of bicuspid
aortic valve. PLoS One. 8(e72394)2013.PubMed/NCBI View Article : Google Scholar
|
10
|
Pedersen TA: Late morbidity after repair
of aortic coarctation. Dan Med J. 59(B4436)2012.PubMed/NCBI
|
11
|
Skeffington KL, Bond AR, Abdul-Ghani S,
Iacobazzi D, Kang SL, Heesom KJ, Wilson MC, Ghorbel M, Stoica S and
Martin R: Bicuspid aortic valve alters aortic protein expression
profile in neonatal coarctation patients. J Clin Med 8:
5172019.
|
12
|
Valikangas T, Suomi T and Elo LL: A
comprehensive evaluation of popular proteomics software workflows
for label-free proteome quantification and imputation. Brief
Bioinform. 19:1344–1355. 2018.PubMed/NCBI View Article : Google Scholar
|
13
|
Bond AR, Iacobazzi D, Abdul-Ghani S,
Ghorbel MT, Heesom KJ, George SJ, Caputo M, Suleiman MS and Tulloh
RM: The cardiac proteome in patients with congenital ventricular
septal defect: A comparative study between right atria and right
ventricles. J Proteomics. 191:107–113. 2019.PubMed/NCBI View Article : Google Scholar
|
14
|
Shrestha N, Bahnan W, Wiley DJ, Barber G,
Fields KA and Schesser K: Eukaryotic initiation factor 2 (eIF2)
signaling regulates proinflammatory cytokine expression and
bacterial invasion. J Biol Chem. 287:28738–28744. 2012.PubMed/NCBI View Article : Google Scholar
|
15
|
Sandquist I and Kolls J: Update on
regulation and effector functions of Th17 cells. F1000Res.
7(205)2018.PubMed/NCBI View Article : Google Scholar
|
16
|
Bories PN, Guenounou M, Feger J, Kodari E,
Agneray J and Durand G: Human alpha 1-acid glycoprotein-exposed
macrophages release interleukin 1 inhibitory activity. Biochem
Biophys Res Commun. 147:710–715. 1987.PubMed/NCBI View Article : Google Scholar
|
17
|
Krotova K, Marek GW, Wang RL, Aslanidi G,
Hoffman BE, Khodayari N, Rouhani FN and Brantly ML: Alpha-1
antitrypsin-deficient macrophages have increased
matriptase-mediated proteolytic activity. Am J Respir Cell Mol
Biol. 57:238–247. 2017.PubMed/NCBI View Article : Google Scholar
|
18
|
Skeel A and Leonard EJ: alpha
1-Antichymotrypsin is the human plasma inhibitor of macrophage
ectoenzymes that cleave pro-macrophage stimulating protein. J Biol
Chem. 276:21932–21937. 2001.PubMed/NCBI View Article : Google Scholar
|
19
|
Fournier T, Medjoubi NN and Porquet D:
Alpha-1-acid glycoprotein. Biochim Biophys Acta. 1482:157–171.
2000.PubMed/NCBI View Article : Google Scholar
|
20
|
Jain S, Gautam V and Naseem S: Acute-phase
proteins: As diagnostic tool. J Pharm Bioallied Sci. 3:118–127.
2011.PubMed/NCBI View Article : Google Scholar
|
21
|
Rolla S, Ingoglia G, Bardina V, Silengo L,
Altruda F, Novelli F and Tolosano E: Acute-phase protein hemopexin
is a negative regulator of Th17 response and experimental
autoimmune encephalomyelitis development. J Immunol. 191:5451–5459.
2013.PubMed/NCBI View Article : Google Scholar
|
22
|
Janciauskiene S, Wrenger S, Immenschuh S,
Olejnicka B, Greulich T, Welte T and Chorostowska-Wynimko J: The
multifaceted effects of Alpha1-antitrypsin on neutrophil functions.
Front Pharmacol. 9(341)2018.PubMed/NCBI View Article : Google Scholar
|
23
|
Kalsheker NA: Alpha 1-antichymotrypsin.
Int J Biochem Cell Biol. 28:961–964. 1996.PubMed/NCBI View Article : Google Scholar
|
24
|
Levy JH, Sniecinski RM, Welsby IJ and Levi
M: Antithrombin: Anti-inflammatory properties and clinical
applications. Thromb Haemost. 115:712–728. 2016.PubMed/NCBI View Article : Google Scholar
|
25
|
Haglund AC, Ek B and Ek P: Phosphorylation
of human plasma alpha2-Heremans-Schmid glycoprotein (human fetuin)
in vivo. Biochem J. 357:437–445. 2001.PubMed/NCBI View Article : Google Scholar
|
26
|
Lebreton JP, Joisel F, Raoult JP, Lannuzel
B, Rogez JP and Humbert G: Serum concentration of human alpha 2 HS
glycoprotein during the inflammatory process: Evidence that alpha 2
HS glycoprotein is a negative acute-phase reactant. J Clin Invest.
64:1118–1129. 1979.PubMed/NCBI View Article : Google Scholar
|
27
|
Tukaj S, Zillikens D and Kasperkiewicz M:
Inhibitory effects of heat shock protein 90 blockade on
proinflammatory human Th1 and Th17 cell subpopulations. J Inflamm
(Lond). 11(10)2014.PubMed/NCBI View Article : Google Scholar
|
28
|
Mathieu P, Bosse Y, Huggins GS, Della
Corte A, Pibarot P, Michelena HI, Limongelli G, Boulanger MC,
Evangelista A, Bédard E, et al: The pathology and pathobiology of
bicuspid aortic valve: State of the art and novel research
perspectives. J Pathol Clin Res. 1:195–206. 2015.PubMed/NCBI View
Article : Google Scholar
|
29
|
Helderman F, Segers D, de Crom R, Hierck
BP, Poelmann RE, Evans PC and Krams R: Effect of shear stress on
vascular inflammation and plaque development. Curr Opin Lipidol.
18:527–533. 2007.PubMed/NCBI View Article : Google Scholar
|
30
|
Ali OA, Chapman M, Nguyen TH, Chirkov YY,
Heresztyn T, Mundisugih J and Horowitz JD: Interactions between
inflammatory activation and endothelial dysfunction selectively
modulate valve disease progression in patients with bicuspid aortic
valve. Heart. 100:800–805. 2014.PubMed/NCBI View Article : Google Scholar
|
31
|
Balistreri CR, Buffa S, Allegra A, Pisano
C, Ruvolo G, Colonna-Romano G, Lio D, Mazzesi G, Schiavon S, Greco
E, et al: A typical immune T/B subset profile characterizes
bicuspid aortic valve: In an old status? Oxid Med Cell Longev.
2018(5879281)2018.PubMed/NCBI View Article : Google Scholar
|
32
|
Balistreri CR, Pisano C, Candore G, Maresi
E, Codispoti M and Ruvolo G: Focus on the unique mechanisms
involved in thoracic aortic aneurysm formation in bicuspid aortic
valve versus tricuspid aortic valve patients: Clinical implications
of a pilot study. Eur J Cardiothorac Surg. 43:e180–e186.
2013.PubMed/NCBI View Article : Google Scholar
|
33
|
LeMaire SA, Wang X, Wilks JA, Carter SA,
Wen S, Won T, Leonardelli D, Anand G, Conklin LD, Wang XL, et al:
Matrix metalloproteinases in ascending aortic aneurysms: bicuspid
versus trileaflet aortic valves. J Surg Res. 123:40–48.
2005.PubMed/NCBI View Article : Google Scholar
|
34
|
Tzemos N, Lyseggen E, Silversides C,
Jamorski M, Tong JH, Harvey P, Floras J and Siu S: Endothelial
function, carotid-femoral stiffness, and plasma matrix
metalloproteinase-2 in men with bicuspid aortic valve and dilated
aorta. J Am Coll Cardiol. 55:660–668. 2010.PubMed/NCBI View Article : Google Scholar
|
35
|
Gu YJ, Mariani MA, Boonstra PW, Grandjean
JG and van Oeveren W: Complement activation in coronary artery
bypass grafting patients without cardiopulmonary bypass: The role
of tissue injury by surgical incision. Chest. 116:892–898.
1999.PubMed/NCBI View Article : Google Scholar
|
36
|
Billaud M, Phillippi JA, Kotlarczyk MP,
Hill JC, Ellis BW, St Croix CM, Cantu-Medéllin N, Kelley EE and
Gleason TG: Elevated oxidative stress in the aortic media of
patients with bicuspid aortic valve. J Thorac Cardiovasc Surg.
154:1756–1762. 2017.PubMed/NCBI View Article : Google Scholar
|
37
|
Birukov KG: Cyclic stretch, reactive
oxygen species, and vascular remodeling. Antioxid Redox Signal.
11:1651–1667. 2009.PubMed/NCBI View Article : Google Scholar
|
38
|
Phillippi JA, Hill JC, Billaud M, Green
BR, Kotlarczyk MP and Gleason TG: Bicuspid aortic valve morphotype
correlates with regional antioxidant gene expression profiles in
the proximal ascending aorta. Ann Thorac Surg. 104:79–87.
2017.PubMed/NCBI View Article : Google Scholar
|
39
|
Arcucci A, Ruocco MR, Albano F, Granato G,
Romano V, Corso G, Bancone C, De Vendittis E, Della Corte A and
Montagnani S: Analysis of extracellular superoxide dismutase and
Akt in ascending aortic aneurysm with tricuspid or bicuspid aortic
valve. Eur J Histochem. 58(2383)2014.PubMed/NCBI View Article : Google Scholar
|
40
|
Di Fiore A, Monti DM, Scaloni A, De Simone
G and Monti SM: Protective role of carbonic anhydrases iii and vii
in cellular defense mechanisms upon redox unbalance. Oxid Med Cell
Longev. 2018(2018306)2018.PubMed/NCBI View Article : Google Scholar
|
41
|
Browning JL, Miatkowski K, Sizing I,
Griffiths D, Zafari M, Benjamin CD, Meier W and Mackay F: Signaling
through the lymphotoxin beta receptor induces the death of some
adenocarcinoma tumor lines. J Exp Med. 183:867–878. 1996.PubMed/NCBI View Article : Google Scholar
|
42
|
Haimovitz-Friedman A, Kolesnick RN and
Fuks Z: Ceramide signaling in apoptosis. Br Med Bull. 53:539–553.
1997.PubMed/NCBI View Article : Google Scholar
|
43
|
Hoffman B and Liebermann DA: Apoptotic
signaling by c-MYC. Oncogene. 27:6462–6472. 2008.PubMed/NCBI View Article : Google Scholar
|
44
|
Bonderman D, Gharehbaghi-Schnell E,
Wollenek G, Maurer G, Baumgartner H and Lang IM: Mechanisms
underlying aortic dilatation in congenital aortic valve
malformation. Circulation. 99:2138–2143. 1999.PubMed/NCBI View Article : Google Scholar
|
45
|
Cecconi M, Nistri S, Quarti A, Manfrin M,
Colonna PL, Molini E and Perna GP: Aortic dilatation in patients
with bicuspid aortic valve. J Cardiovasc Med (Hagerstown). 7:11–20.
2006.PubMed/NCBI View Article : Google Scholar
|
46
|
Nataatmadja M, West M, West J, Summers K,
Walker P, Nagata M and Watanabe T: Abnormal extracellular matrix
protein transport associated with increased apoptosis of vascular
smooth muscle cells in marfan syndrome and bicuspid aortic valve
thoracic aortic aneurysm. Circulation. 108 (Suppl 1):II329–II334.
2003.PubMed/NCBI View Article : Google Scholar
|
47
|
Schmid FX, Bielenberg K, Schneider A,
Haussler A, Keyser A and Birnbaum D: Ascending aortic aneurysm
associated with bicuspid and tricuspid aortic valve: Involvement
and clinical relevance of smooth muscle cell apoptosis and
expression of cell death-initiating proteins. Eur J Cardiothorac
Surg. 23:537–543. 2003.PubMed/NCBI View Article : Google Scholar
|
48
|
Hahn RT, Roman MJ, Mogtader AH and
Devereux RB: Association of aortic dilation with regurgitant,
stenotic and functionally normal bicuspid aortic valves. J Am Coll
Cardiol. 19:283–288. 1992.PubMed/NCBI View Article : Google Scholar
|
49
|
Harrison OJ, Visan AC, Moorjani N, Modi A,
Salhiyyah K, Torrens C, Ohri S and Cagampang FR: Defective NOTCH
signaling drives increased vascular smooth muscle cell apoptosis
and contractile differentiation in bicuspid aortic valve
aortopathy: A review of the evidence and future directions. Trends
Cardiovasc Med. 29:61–68. 2019.PubMed/NCBI View Article : Google Scholar
|
50
|
Niwa K, Perloff JK, Bhuta SM, Laks H,
Drinkwater DC, Child JS and Miner PD: Structural abnormalities of
great arterial walls in congenital heart disease: Light and
electron microscopic analyses. Circulation. 103:393–400.
2001.PubMed/NCBI View Article : Google Scholar
|
51
|
Butcher JT, Johnson T, Beers J, Columbus L
and Isakson BE: Hemoglobin alpha in the blood vessel wall. Free
Radic Biol Med. 73:136–142. 2014.PubMed/NCBI View Article : Google Scholar
|
52
|
Saha D, Patgaonkar M, Shroff A, Ayyar K,
Bashir T and Reddy KV: Hemoglobin expression in nonerythroid cells:
Novel or ubiquitous? Int J Inflam. 2014(803237)2014.PubMed/NCBI View Article : Google Scholar
|