1
|
Kreso A and Dick JE: Evolution of the
cancer stem cell model. Cell Stem Cell. 14:275–291. 2014.PubMed/NCBI View Article : Google Scholar
|
2
|
Visvader JE and Lindeman GJ: Cancer stem
cells: Current status and evolving complexities. Cell Stem Cell.
10:717–728. 2012.PubMed/NCBI View Article : Google Scholar
|
3
|
Richie RC and Swanson JO: Breast cancer: A
review of the literature. J Insurance Med. 35:85–101.
2003.PubMed/NCBI
|
4
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2018. CA Cancer J Clin. 68:7–30. 2018.PubMed/NCBI View Article : Google Scholar
|
5
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018.PubMed/NCBI View Article : Google Scholar
|
6
|
Shimono Y, Mukohyama J, Nakamura S and
Minami H: MicroRNA regulation of human breast cancer stem cells. J
Clin Med. 5(2)2016.PubMed/NCBI View Article : Google Scholar
|
7
|
Hayes J, Peruzzi PP and Lawler S:
MicroRNAs in cancer: Biomarkers, functions and therapy. Trends Mol
Med. 20:460–469. 2014.PubMed/NCBI View Article : Google Scholar
|
8
|
Peng Y and Croce CM: The role of MicroRNAs
in human cancer. Signal Transduct Target Ther.
1(15004)2016.PubMed/NCBI View Article : Google Scholar
|
9
|
Takahashi RU, Miyazaki H and Ochiya T: The
role of microRNAs in the regulation of cancer stem cells. Front
Genet. 4(295)2014.PubMed/NCBI View Article : Google Scholar
|
10
|
Garg M: Emerging role of microRNAs in
cancer stem cells: Implications in cancer therapy. World J Stem
Cells. 7:1078–1089. 2015.PubMed/NCBI View Article : Google Scholar
|
11
|
Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong
C, Huang Y, Hu X, Su F, Lieberman J and Song E: Let-7 regulates
self renewal and tumorigenicity of breast cancer cells. Cell.
131:1109–1123. 2007.PubMed/NCBI View Article : Google Scholar
|
12
|
Shimono Y, Zabala M, Cho RW, Lobo N,
Dalerba P, Qian D, Diehn M, Liu H, Panula SP, Chiao E, et al:
Downregulation of miRNA-200c links breast cancer stem cells with
normal stem cells. Cell. 138:592–603. 2009.PubMed/NCBI View Article : Google Scholar
|
13
|
Feng ZM, Qiu J, Chen XW, Liao RX, Liao XY,
Zhang LP, Chen X, Li Y, Chen ZT and Sun JG: Essential role of
miR-200c in regulating self-renewal of breast cancer stem cells and
their counterparts of mammary epithelium. BMC Cancer.
15(645)2015.PubMed/NCBI View Article : Google Scholar
|
14
|
Liu S, Patel SH, Ginestier C, Ibarra I,
Martin-Trevino R, Bai S, McDermott SP, Shang L, Ke J, Ou SJ, et al:
MicroRNA93 regulates proliferation and differentiation of normal
and malignant breast stem cells. PLoS Genet.
8(e1002751)2012.PubMed/NCBI View Article : Google Scholar
|
15
|
Taube JH, Malouf GG, Lu E, Sphyris N,
Vijay V, Ramachandran PP, Ueno KR, Gaur S, Nicoloso MS, Rossi S, et
al: Epigenetic silencing of microRNA-203 is required for EMT and
cancer stem cell properties. Sci Rep. 3(2687)2013.PubMed/NCBI View Article : Google Scholar
|
16
|
El Helou R, Pinna G, Cabaud O, Wicinski J,
Bhajun R, Guyon L, Rioualen C, Finetti P, Gros A, Mari B, et al:
miR-600 Acts as a Bimodal switch that regulates breast cancer stem
cell fate through WNT signaling. Cell Rep. 18:2256–2268.
2017.PubMed/NCBI View Article : Google Scholar
|
17
|
Ma S, Tang KH, Chan YP, Lee TK, Kwan PS,
Castilho A, Ng I, Man K, Wong N, To KF, et al: miR-130b promotes
CD133(+) liver tumor-initiating cell growth and self-renewal via
tumor protein 53-induced nuclear protein 1. Cell Stem Cell.
7:694–707. 2010.PubMed/NCBI View Article : Google Scholar
|
18
|
Liu C, Kelnar K, Liu B, Chen X,
Calhoun-Davis T, Li H, Patrawala L, Yan H, Jeter C, Honorio S, et
al: The microRNA miR-34a inhibits prostate cancer stem cells and
metastasis by directly repressing CD44. Natu Med. 17:211–215.
2011.PubMed/NCBI View
Article : Google Scholar
|
19
|
Bu P, Chen KY, Chen JH, Wang L, Walters J,
Shin YJ, Goerger JP, Sun J, Witherspoon M, Rakhilin N, et al: A
microRNA miR-34a-regulated bimodal switch targets Notch in colon
cancer stem cells. Cell Stem Cell. 12:602–615. 2013.PubMed/NCBI View Article : Google Scholar
|
20
|
Hwang WL, Jiang JK, Yang SH, Huang TS, Lan
HY, Teng HW, Yang CY, Tsai YP, Lin CH, Wang HW and Yang MH:
MicroRNA-146a directs the symmetric division of Snail-dominant
colorectal cancer stem cells. Nat Cell Biol. 16:268–280.
2014.PubMed/NCBI View
Article : Google Scholar
|
21
|
Wang H, Sun T, Hu J, Zhang R, Rao Y, Wang
S, Chen R, McLendon RE, Friedman AH, Keir ST, et al: miR-33a
promotes glioma-initiating cell self-renewal via PKA and NOTCH
pathways. J Clin Invest. 124:4489–4502. 2014.PubMed/NCBI View
Article : Google Scholar
|
22
|
Chang WM, Lin YF, Su CY, Peng HY, Chang
YC, Lai TC, Wu GH, Hsu YM, Chi LH, Hsiao JR, et al: Dysregulation
of RUNX2/Activin-A Axis upon miR-376c downregulation promotes lymph
node metastasis in head and neck squamous cell carcinoma. Cancer
Res. 76:7140–7150. 2016.PubMed/NCBI View Article : Google Scholar
|
23
|
Tu L, Zhao E, Zhao W, Zhang Z, Tang D,
Zhang Y, Wang C, Zhuang C and Cao H: Hsa-miR-376c-3p regulates
gastric tumor growth both in vitro and in vivo. Biomed Res Int.
2016(9604257)2016.PubMed/NCBI View Article : Google Scholar
|
24
|
Wang K, Jin J, Ma T and Zhai H:
MiR-376c-3p regulates the proliferation, invasion, migration, cell
cycle and apoptosis of human oral squamous cancer cells by
suppressing HOXB7. Biomed Pharmacother. 91:517–525. 2017.PubMed/NCBI View Article : Google Scholar
|
25
|
Bhavsar SP, Lokke C, Flaegstad T and
Einvik C: Hsa-miR-376c-3p targets Cyclin D1 and induces G1-cell
cycle arrest in neuroblastoma cells. Oncol Lett. 16:6786–6794.
2018.PubMed/NCBI View Article : Google Scholar
|
26
|
Wang Y, Chang W, Chang W, Chang X, Zhai S,
Pan G and Dang S: MicroRNA-376c-3p Facilitates human hepatocellular
carcinoma progression via repressing at-rich interaction domain 2.
J Cancer. 9:4187–4196. 2018.PubMed/NCBI View Article : Google Scholar
|
27
|
Zhang YH, Fu J, Zhang ZJ, Ge CC and Yi Y:
LncRNA-LINC00152 down-regulated by miR-376c-3p restricts viability
and promotes apoptosis of colorectal cancer cells. Am J Transl Res.
8:5286–5297. 2016.PubMed/NCBI
|
28
|
Luo ML, Gong C, Chen CH, Hu H, Huang P,
Zheng M, Yao Y, Wei S, Wulf G, Lieberman J, et al: The Rab2A GTPase
promotes breast cancer stem cells and tumorigenesis via Erk
signaling activation. Cell Rep. 11:111–124. 2015.PubMed/NCBI View Article : Google Scholar
|
29
|
Kajiho H, Kajiho Y, Frittoli E,
Confalonieri S, Bertalot G, Viale G, Di Fiore PP, Oldani A, Garre
M, Beznoussenko GV, et al: RAB2A controls MT1-MMP endocytic and
E-cadherin polarized Golgi trafficking to promote invasive breast
cancer programs. EMBO Reps. 17:1061–1080. 2016.PubMed/NCBI View Article : Google Scholar
|
30
|
Lin X, Chen W, Wei F, Zhou BP, Hung MC and
Xie X: POMC maintains tumor-initiating properties of tumor
tissue-derived long-term-cultured breast cancer stem cells. Int J
Cancer. 140:2517–2525. 2017.PubMed/NCBI View Article : Google Scholar
|
31
|
Lin X, Chen W, Wei F, Zhou BP, Hung MC and
Xie X: Nanoparticle delivery of miR-34a Eradicates
Long-term-cultured breast cancer stem cells via targeting C22ORF28
directly. Theranostics. 7:4805–4824. 2017.PubMed/NCBI View Article : Google Scholar
|
32
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
33
|
Huo D, Clayton WM, Yoshimatsu TF, Chen J
and Olopade OI: Identification of a circulating microRNA signature
to distinguish recurrence in breast cancer patients. Oncotarget.
7:55231–55248. 2016.PubMed/NCBI View Article : Google Scholar
|
34
|
Zhang L, Chen Y, Wang H, Zheng X, Li C and
Han Z: miR-376a inhibits breast cancer cell progression by
targeting neuropilin-1 NR. OncoTargets Ther. 11:5293–5302.
2018.PubMed/NCBI View Article : Google Scholar
|
35
|
van Schooneveld E, Wildiers H, Vergote I,
Vermeulen PB, Dirix LY and Van Laere SJ: Dysregulation of microRNAs
in breast cancer and their potential role as prognostic and
predictive biomarkers in patient management. Breast Cancer Res.
17(21)2015.PubMed/NCBI View Article : Google Scholar
|
36
|
Cuk K, Zucknick M, Heil J, Madhavan D,
Schott S, Turchinovich A, Arlt D, Rath M, Sohn C, Benner A, et al:
Circulating microRNAs in plasma as early detection markers for
breast cancer. Int J Cancer. 132:1602–1612. 2013.PubMed/NCBI View Article : Google Scholar
|
37
|
Fan X, Chen W, Fu Z, Zeng L, Yin Y and
Yuan H: MicroRNAs, a subpopulation of regulators, are involved in
breast cancer progression through regulating breast cancer stem
cells. Oncol Lett. 14:5069–5076. 2017.PubMed/NCBI View Article : Google Scholar
|
38
|
Lőrincz P, Tóth S, Benkő P, Lakatos Z,
Boda A, Glatz G, Zobel M, Bisi S, Hegedűs K, Takáts S, et al: Rab2
promotes autophagic and endocytic lysosomal degradation. J Cell
Biol. 216:1937–1947. 2017.PubMed/NCBI View Article : Google Scholar
|