1
|
Capizzi A, Woo J and Verduzco-Gutierrez M:
Traumatic brain injury: An overview of epidemiology,
pathophysiology, and medical management. Med Clin North Am.
104:213–238. 2020.PubMed/NCBI View Article : Google Scholar
|
2
|
Honeybul S: Reconsidering the role of
hypothermia in management of severe traumatic brain injury. J Clin
Neurosci. 28:12–15. 2016.PubMed/NCBI View Article : Google Scholar
|
3
|
Donkin JJ and Vink R: Mechanisms of
cerebral edema in traumatic brain injury: Therapeutic developments.
Curr Opin Neurol. 23:293–299. 2010.PubMed/NCBI View Article : Google Scholar
|
4
|
Adeva MM, Souto G, Donapetry C, Portals M,
Rodriguez A and Lamas D: Brain edema in diseases of different
etiology. Neurochem Int. 61:166–174. 2012.PubMed/NCBI View Article : Google Scholar
|
5
|
Kochanek PM, Jackson TC, Ferguson NM,
Carlson SW, Simon DW, Brockman EC, Ji J, Bayır H, Poloyac SM,
Wagner AK, et al: Emerging therapies in traumatic brain injury.
Semin Neurol. 35:83–100. 2015.PubMed/NCBI View Article : Google Scholar
|
6
|
Mamtilahun M, Tang G, Zhang Z, Wang Y,
Tang Y and Yang GY: Targeting Water in the Bra in: Role of
Aquaporin-4 in Ischemic Brain Edema. Curr Drug Targets. 20:748–755.
2019.PubMed/NCBI View Article : Google Scholar
|
7
|
Kitchen P, Day RE, Salman MM, Conner MT,
Bill RM and Conner AC: Beyond water homeostasis: Diverse functional
roles of mammalian aquaporins. Biochim Biophys Acta.
1850:2410–2421. 2015.PubMed/NCBI View Article : Google Scholar
|
8
|
Verkman AS, Anderson MO and Papadopoulos
MC: Aquaporins: Important but elusive drug targets. Nat Rev Drug
Discov. 13:259–277. 2014.PubMed/NCBI View
Article : Google Scholar
|
9
|
Papadopoulos MC and Verkman AS: Aquaporin
water channels in the nervous system. Nat Rev Neurosci. 14:265–277.
2013.PubMed/NCBI View
Article : Google Scholar
|
10
|
Papadopoulos MC, Manley GT, Krishna S and
Verkman AS: Aquaporin-4 facilitates reabsorption of excess fluid in
vasogenic brain edema. FASEB J. 18:1291–1293. 2004.PubMed/NCBI View Article : Google Scholar
|
11
|
Yao X, Derugin N, Manley GT and Verkman
AS: Reduced brain edema and infarct volume in aquaporin-4 deficient
mice after transient focal cerebral ischemia. Neurosci Lett.
584:368–372. 2015.PubMed/NCBI View Article : Google Scholar
|
12
|
Liu S, Mao J, Wang T and Fu X:
Downregulation of Aquaporin-4 protects brain against hypoxia
ischemia via anti-inflammatory mechanism. Mol Neurobiol.
54:6426–6435. 2017.PubMed/NCBI View Article : Google Scholar
|
13
|
Yin J, Zhang H, Chen H, Lv Q and Jin X:
Hypertonic Saline Alleviates Brain Edema After Traumatic Brain
Injury via Downregulation of Aquaporin 4 in Rats. Med Sci Monit.
24:1863–1870. 2018.PubMed/NCBI View Article : Google Scholar
|
14
|
National Research Council (US) Committee
for the Update of the Guide for the Care and Use of Laboratory
Animals: Guide for the Care and Use of Laboratory Animals. 8th
edition. National Academies Press (US), Washington (DC), 2011.
|
15
|
Huang L, Cao W, Deng Y, Zhu G, Han Y and
Zeng H: Hypertonic saline alleviates experimentally induced
cerebral oedema through suppression of vascular endothelial growth
factor and its receptor VEGFR2 expression in astrocytes. BMC
Neurosci. 17(64)2016.PubMed/NCBI View Article : Google Scholar
|
16
|
Wen M, Ye J, Han Y, Huang L, Yang H, Jiang
W, Chen S, Zhong W, Zeng H and Li DY: Hypertonic saline regulates
microglial M2 polarization via miR-200b/KLF4 in cerebral edema
treatment. Biochem Biophys Res Commun. 499:345–353. 2018.PubMed/NCBI View Article : Google Scholar
|
17
|
Niu F, Dong J, Xu X, Zhang B and Liu B:
Mitochondrial division inhibitor 1 prevents early-stage induction
of mitophagy and accelerated cell death in a rat model of moderate
controlled cortical impact brain injury. World Neurosurg.
122:e1090–e1101. 2019.PubMed/NCBI View Article : Google Scholar
|
18
|
Paxinos G and Watson C: The rat brain in
stereotaxic coordinates. 6th Edition. Elsevier, 2007.
|
19
|
Gerriets T, Stolz E, Walberer M, Müller C,
Kluge A, Bachmann A, Fisher M, Kaps M and Bachmann G: Noninvasive
quantification of brain edema and the space-occupying effect in rat
stroke models using magnetic resonance imaging. Stroke. 35:566–571.
2004.PubMed/NCBI View Article : Google Scholar
|
20
|
Zhao M, Liang F, Xu H, Yan W and Zhang J:
Methylene blue exerts a neuroprotective effect against traumatic
brain injury by promoting autophagy and inhibiting microglial
activation. Mol Med Rep. 13:13–20. 2016.PubMed/NCBI View Article : Google Scholar
|
21
|
Khaksari M, Soltani Z, Shahrokhi N,
Moshtaghi G and Asadikaram G: The role of estrogen and
progesterone, administered alone and in combination, in modulating
cytokine concentration following traumatic brain injury. Can J
Physiol Pharmacol. 89:31–40. 2011.PubMed/NCBI View
Article : Google Scholar
|
22
|
Li W, Wang R, Xie H, Zhang J and Jia Z:
Changes of pathological and physiological indicators affecting drug
metabolism in rats after acute exposure to high altitude. Exp Ther
Med. 9:98–104. 2015.PubMed/NCBI View Article : Google Scholar
|
23
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) Method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
24
|
Stokum JA, Kurland DB, Gerzanich V and
Simard JM: Mechanisms of astrocyte-mediated cerebral edema.
Neurochem Res. 40:317–328. 2015.PubMed/NCBI View Article : Google Scholar
|
25
|
Kimelberg HK: Current concepts of brain
edema. Review of laboratory investigations. J Neurosurg.
83:1051–1059. 1995.PubMed/NCBI View Article : Google Scholar
|
26
|
Hatashita S, Hoff JT and Salamat SM:
Ischemic brain edema and the osmotic gradient between blood and
brain. J Cereb Blood Flow Metab. 8:552–559. 1988.PubMed/NCBI View Article : Google Scholar
|
27
|
Wasterlain CG and Torack RM: Cerebral
edema in water intoxication. II. An ultrastructural study. Arch
Neurol. 19:79–87. 1968.PubMed/NCBI View Article : Google Scholar
|
28
|
Hara-Chikuma M and Verkman AS:
Physiological roles of glycerol-transporting aquaporins: The
aquaglyceroporins. Cell Mol Life Sci. 63:1386–1392. 2006.PubMed/NCBI View Article : Google Scholar
|
29
|
Papadopoulos MC and Verkman AS:
Aquaporin-4 gene disruption in mice reduces brain swelling and
mortality in pneumococcal meningitis. J Biol Chem. 280:13906–13912.
2005.PubMed/NCBI View Article : Google Scholar
|
30
|
Appelboom G, Bruce S, Duren A, Piazza M,
Monahan A, Christophe B, Zoller S, LoPresti M and Connolly ES:
Aquaporin-4 gene variant independently associated with oedema after
intracerebral haemorrhage. Neurol Res. 37:657–661. 2015.PubMed/NCBI View Article : Google Scholar
|
31
|
Suzuki R, Okuda M, Asai J, Nagashima G,
Itokawa H, Matsunaga A, Fujimoto T and Suzuki T: Astrocytes
co-express aquaporin-1, -4, and vascular endothelial growth factor
in brain edema tissue associated with brain contusion. Acta
Neurochir Suppl (Wien). 96:398–401. 2006.PubMed/NCBI View Article : Google Scholar
|
32
|
Sun MC, Honey CR, Berk C, Wong NL and Tsui
JK: Regulation of aquaporin-4 in a traumatic brain injury model in
rats. J Neurosurg. 98:565–569. 2003.PubMed/NCBI View Article : Google Scholar
|
33
|
Yao X, Uchida K, Papadopoulos MC, Zador Z,
Manley GT and Verkman AS: Mildly reduced brain swelling and
improved neurological outcome in aquaporin-4 knockout mice
following controlled cortical impact brain injury. J Neurotrauma.
32:1458–1464. 2015.PubMed/NCBI View Article : Google Scholar
|
34
|
Wallisch JS, Janesko-Feldman K, Alexander
H, Jha RM, Farr GW, McGuirk PR, Kline AE, Jackson TC, Pelletier MF,
Clark RSB, et al: The aquaporin-4 inhibitor AER-271 blocks acute
cerebral edema and improves early outcome in a pediatric model of
asphyxial cardiac arrest. Pediatr Res. 85:511–517. 2019.PubMed/NCBI View Article : Google Scholar
|
35
|
Manley GT, Fujimura M, Ma T, Noshita N,
Filiz F, Bollen AW, Chan P and Verkman AS: Aquaporin-4 deletion in
mice reduces brain edema after acute water intoxication and
ischemic stroke. Nat Med. 6:159–163. 2000.PubMed/NCBI View
Article : Google Scholar
|
36
|
Katada R, Akdemir G, Asavapanumas N,
Ratelade J, Zhang H and Verkman A: Greatly improved survival and
neuroprotection in aquaporin-4-knockout mice following global
cerebral ischemia. FASEB J. 28:705–714. 2014.PubMed/NCBI View Article : Google Scholar
|
37
|
Jha RM, Kochanek PM and Simard JM:
Pathophysiology and treatment of cerebral edema in traumatic brain
injury. Neuropharmacology. 145 (Pt B):230–246. 2019.PubMed/NCBI View Article : Google Scholar
|
38
|
Alves JL: Blood-brain barrier and
traumatic brain injury. J Neurosci Res. 92:141–147. 2014.
|
39
|
Lu L, Wang M, Yuan F, Wei X and Li W:
Roles of elevated 20 HETE in the breakdown of blood brain barrier
and the severity of brain edema in experimental traumatic brain
injury. Mol Med Rep. 17:7339–7345. 2018.PubMed/NCBI View Article : Google Scholar
|
40
|
Kim JY, Ko AR, Hyun HW and Kang TC: ETB
receptor-mediated MMP-9 activation induces vasogenic edema via ZO-1
protein degradation following status epilepticus. Neuroscience.
304:355–367. 2015.PubMed/NCBI View Article : Google Scholar
|
41
|
Nico B, Frigeri A, Nicchia GP,
Quondamatteo F, Herken R, Errede M, Ribatti D, Svelto M and Roncali
L: Role of aquaporin-4 water channel in the development and
integrity of the blood-brain barrier. J Cell Sci. 114:1297–1307.
2001.PubMed/NCBI
|
42
|
Escartin C and Bonvento G: Targeted
activation of astrocytes: A potential neuroprotective strategy. Mol
Neurobiol. 38:231–241. 2008.PubMed/NCBI View Article : Google Scholar
|
43
|
Hol EM and Pekny M: Glial fibrillary
acidic protein (GFAP) and the astrocyte intermediate filament
system in diseases of the central nervous system. Curr Opin Cell
Biol. 32:121–130. 2015.PubMed/NCBI View Article : Google Scholar
|
44
|
Okimura Y, Tanno H, Fukuda K, Ohga M,
Nakamura M, Aihara N and Yamaura A: Reactive astrocytes in acute
stage after experimental brain injury: Relationship to extravasated
plasma protein and expression of heat shock protein. J Neurotrauma.
13:385–393. 1996.PubMed/NCBI View Article : Google Scholar
|
45
|
Burda JE, Bernstein AM and Sofroniew MV:
Astrocyte roles in traumatic brain injury. Exp Neurol. 275:305–315.
2016.PubMed/NCBI View Article : Google Scholar
|
46
|
Hopp S, Nolte MW, Stetter C, Kleinschnitz
C, Sirén AL and Albert-Weissenberger C: Alleviation of secondary
brain injury, posttraumatic inflammation, and brain edema formation
by inhibition of factor XIIa. J Neuroinflammation.
14(39)2017.PubMed/NCBI View Article : Google Scholar
|
47
|
Huang LQ, Zhu GF, Deng YY, Jiang WQ, Fang
M, Chen CB, Cao W, Wen MY, Han YL and Zeng HK: Hypertonic saline
alleviates cerebral edema by inhibiting microglia-derived TNF-α and
IL-1β-induced Na-K-Cl Cotransporter up-regulation. J
Neuroinflammation. 11(102)2014.PubMed/NCBI View Article : Google Scholar
|
48
|
Holmin S and Mathiesen T: Intracerebral
administration of interleukin-1beta and induction of inflammation,
apoptosis, and vasogenic edema. J Neurosurg. 92:108–120.
2000.PubMed/NCBI View Article : Google Scholar
|
49
|
Ito H, Yamamoto N, Arima H, Hirate H,
Morishima T, Umenishi F, Tada T, Asai K, Katsuya H and Sobue K:
Interleukin-1beta induces the expression of aquaporin-4 through a
nuclear factor-kappaB pathway in rat astrocytes. J Neurochem.
99:107–118. 2006.PubMed/NCBI View Article : Google Scholar
|
50
|
Fenn AM, Skendelas JP, Moussa DN,
Muccigrosso MM, Popovich PG, Lifshitz J, Eiferman DS and Godbout
JP: Methylene blue attenuates traumatic brain injury-associated
neuroinflammation and acute depressive-like behavior in mice. J
Neurotrauma. 32:127–138. 2015.PubMed/NCBI View Article : Google Scholar
|
51
|
Skaper SD, Facci L, Zusso M and Giusti P:
An inflammation-centric view of neurological disease: Beyond the
neuron. Front Cell Neurosci. 12(72)2018.PubMed/NCBI View Article : Google Scholar
|
52
|
Liu R, Pan MX, Tang JC, Zhang Y, Liao HB,
Zhuang Y, Zhao D and Wan Q: Role of neuroinflammation in ischemic
stroke. Neuroimmunol Neuroinflamm. 4:158–166. 2017.
|
53
|
Blamire AM, Anthony DC, Rajagopalan B,
Sibson NR, Perry VH and Styles P: Interleukin-1β -induced changes
in blood-brain barrier permeability, apparent diffusion
coefficient, and cerebral blood volume in the rat brain: A magnetic
resonance study. J Neurosci. 20:8153–8159. 2000.PubMed/NCBI View Article : Google Scholar
|
54
|
Lee WT, Tai SH, Lin YW, Wu TS and Lee EJ:
YC 1 reduces inflammatory responses by inhibiting nuclear factor κB
translocation in mice subjected to transient focal cerebral
ischemia. Mol Med Rep. 18:2043–2051. 2018.PubMed/NCBI View Article : Google Scholar
|
55
|
Sater AP, Rael LT, Tanner AH, Lieser MJ,
Acuna DL, Mains CW and Bar-Or D: Cell death after traumatic brain
injury: Detrimental role of anoikis in healing. Clin Chim Acta.
482:149–154. 2018.PubMed/NCBI View Article : Google Scholar
|
56
|
Raghupathi R: Cell death mechanisms
following traumatic brain injury. Brain Pathol. 14:215–222.
2004.PubMed/NCBI View Article : Google Scholar
|