1
|
Li X, Lan Y, Wang Y, Nie M, Lu Y and Zhao
E: Telmisartan suppresses cardiac hypertrophy by inhibiting
cardiomyocyte apoptosis via the NFAT/ANP/BNP signaling pathway. Mol
Med Rep. 15:2574–2582. 2017.PubMed/NCBI View Article : Google Scholar
|
2
|
Facundo H, Brainard RE, Caldas F and Lucas
A: Mitochondria and cardiac hypertrophy. Adv Exp Med Biol.
982:203–226. 2017.PubMed/NCBI View Article : Google Scholar
|
3
|
Tham YK, Bernardo BC, Ooi JY, Weeks KL and
McMullen JR: Pathophysiology of cardiac hypertrophy and heart
failure: Signaling pathways and novel therapeutic targets. Arch
Toxicol. 89:1401–1438. 2015.PubMed/NCBI View Article : Google Scholar
|
4
|
Haque ZK and Wang DZ: How cardiomyocytes
sense pathophysiological stresses for cardiac remodeling. Cell Mol
Life Sci. 74:983–1000. 2017.PubMed/NCBI View Article : Google Scholar
|
5
|
Shen S, Jiang H, Bei Y, Xiao J and Li X:
Long non-coding RNAs in cardiac remodeling. Cell Physiol Biochem.
41:1830–1837. 2017.PubMed/NCBI View Article : Google Scholar
|
6
|
Viereck J, Kumarswamy R, Foinquinos A,
Xiao K, Avramopoulos P, Kunz M, Dittrich M, Maetzig T, Zimmer K, et
al: Long noncoding RNA Chast promotes cardiac remodeling. Sci
Transl Med. 8(326ra22)2016.PubMed/NCBI View Article : Google Scholar
|
7
|
Zhou G, Li C, Feng J, Zhang J and Fang Y:
lncRNA UCA1 is a novel regulator in cardiomyocyte hypertrophy
through targeting the miR-184/HOXA9 axis. Cardiorenal Med.
8:130–139. 2018.PubMed/NCBI View Article : Google Scholar
|
8
|
Shao M, Chen G, Lv F, Liu Y, Tian H, Tao
R, Jiang R, Zhang W and Zhuo C: lncRNA TINCR attenuates cardiac
hypertrophy by epigenetically silencing CaMKII. Oncotarget.
8:47565–47573. 2017.PubMed/NCBI View Article : Google Scholar
|
9
|
Zhu XH, Yuan YX, Rao SL and Wang P: lncRNA
MIAT enhances cardiac hypertrophy partly through sponging miR-150.
Eur Rev Med Pharmacol Sci. 20:3653–3660. 2016.PubMed/NCBI
|
10
|
Wo Y, Guo J, Li P, Yang H and Wo J: Long
non-coding RNA CHRF facilitates cardiac hypertrophy through
regulating Akt3 via miR-93. Cardiovasc Pathol. 35:29–36.
2018.PubMed/NCBI View Article : Google Scholar
|
11
|
Huarte M: The emerging role of lncRNAs in
cancer. Nat Med. 21:1253–1261. 2015.PubMed/NCBI View
Article : Google Scholar
|
12
|
Wu X, Yan T, Wang Z, Wu X, Cao G and Zhang
C: lncRNA ZEB2-AS1 promotes bladder cancer cell proliferation and
inhibits apoptosis by regulating miR-27b. Biomed Pharmacother.
96:299–304. 2017.PubMed/NCBI View Article : Google Scholar
|
13
|
Gao H, Gong N, Ma Z, Miao X, Chen J, Cao Y
and Zhang G: lncRNA ZEB2-AS1 promotes pancreatic cancer cell growth
and invasion through regulating the miR-204/HMGB1 axis. Int J Biol
Macromol. 116:545–551. 2018.PubMed/NCBI View Article : Google Scholar
|
14
|
Wang F, Zhu W, Yang R, Xie W and Wang D:
lncRNA ZEB2-AS1 contributes to the tumorigenesis of gastric cancer
via activating the Wnt/β-catenin pathway. Mol Cell Biochem.
451:73–83. 2019.PubMed/NCBI View Article : Google Scholar
|
15
|
Wang K, Lin ZQ, Long B, Li JH, Zhou J and
Li PF: Cardiac hypertrophy is positively regulated by MicroRNA
miR-23a. J Biol Chem. 287:589–599. 2012.PubMed/NCBI View Article : Google Scholar
|
16
|
Forlenza M, Kaiser T, Savelkoul HF and
Wiegertjes GF: The use of real-time quantitative PCR for the
analysis of cytokine mRNA levels. Methods Mol Biol. 820:7–23.
2012.PubMed/NCBI View Article : Google Scholar
|
17
|
Creemers EE, Wilde AA and Pinto YM: Heart
failure: Advances through genomics. Nat Rev Genet. 12:357–362.
2011.PubMed/NCBI View
Article : Google Scholar
|
18
|
Frey N and Olson EN: Cardiac hypertrophy:
The good, the bad, and the ugly. Annu Rev Physiol. 65:45–79.
2003.PubMed/NCBI View Article : Google Scholar
|
19
|
Braunwald E: The war against heart
failure: The Lancet lecture. Lancet. 385:812–824. 2015.PubMed/NCBI View Article : Google Scholar
|
20
|
Huang Q and Cai B: Exosomes as new
intercellular mediators in development and therapeutics of
cardiomyocyte hypertrophy. Adv Exp Med Biol. 998:91–100.
2017.PubMed/NCBI View Article : Google Scholar
|
21
|
McMullen JR and Jennings GL: Differences
between pathological and physiological cardiac hypertrophy: Novel
therapeutic strategies to treat heart failure. Clin Exp Pharmacol
Physiol. 34:255–262. 2007.PubMed/NCBI View Article : Google Scholar
|
22
|
Bernardo BC, Weeks KL, Pretorius L and
McMullen JR: Molecular distinction between physiological and
pathological cardiac hypertrophy: Experimental findings and
therapeutic strategies. Pharmacol Ther. 128:191–227.
2010.PubMed/NCBI View Article : Google Scholar
|
23
|
van Rooij E, Sutherland LB, Liu N,
Williams AH, McAnally J, Gerard RD, Richardson JA and Olson EN: A
signature pattern of stress-responsive microRNAs that can evoke
cardiac hypertrophy and heart failure. Proc Natl Acad Sci USA.
103:18255–18260. 2006.PubMed/NCBI View Article : Google Scholar
|
24
|
Bao Q, Zhao M, Chen L, Wang Y, Wu S, Wu W
and Liu X: MicroRNA-297 promotes cardiomyocyte hypertrophy via
targeting sigma-1 receptor. Life Sci. 175:1–10. 2017.PubMed/NCBI View Article : Google Scholar
|
25
|
Malaney P, Uversky VN and Dave V: PTEN
proteoforms in biology and disease. Cell Mol Life Sci.
74:2783–2794. 2017.PubMed/NCBI View Article : Google Scholar
|
26
|
Wise HM, Hermida MA and Leslie NR:
Prostate cancer, PI3K, PTEN and prognosis. Clin Sci (Lond).
131:197–210. 2017.PubMed/NCBI View Article : Google Scholar
|
27
|
Zhang HM, Fan TT, Li W and Li XX:
Expressions and significances of TTF-1 and PTEN in early
endometrial cancer. Eur Rev Med Pharmacol Sci. 21:20–26.
2017.PubMed/NCBI
|
28
|
Zhang R, Guo Y, Ma Z, Ma G, Xue Q, Li F
and Liu L: Long non-coding RNA PTENP1 functions as a ceRNA to
modulate PTEN level by decoying miR-106b and miR-93 in gastric
cancer. Oncotarget. 8:26079–26089. 2017.PubMed/NCBI View Article : Google Scholar
|
29
|
Shen W, Li HL, Liu L and Cheng JX:
Expression levels of PTEN, HIF-1α, and VEGF as prognostic factors
in ovarian cancer. Eur Rev Med Pharmacol Sci. 21:2596–2603.
2017.PubMed/NCBI
|
30
|
Ngeow J, Sesock K and Eng C: Breast cancer
risk and clinical implications for germline PTEN mutation carriers.
Breast Cancer Res Treat. 165:1–8. 2017.PubMed/NCBI View Article : Google Scholar
|
31
|
Sun J, Li T, Zhao Y, Huang L, Sun H, Wu H
and Jiang X: USP10 inhibits lung cancer cell growth and invasion by
upregulating PTEN. Mol Cell Biochem. 441:1–7. 2018.PubMed/NCBI View Article : Google Scholar
|
32
|
Li MF, Guan H and Zhang DD: Effect of
overexpression of PTEN on apoptosis of liver cancer cells. Genet
Mol Res 15, 2016.
|
33
|
Beg S, Siraj AK, Jehan Z, Prabakaran S,
Al-Sobhi SS, Al-Dawish M, Al-Dayel F and Al-Kuraya KS: PTEN loss is
associated with follicular variant of Middle Eastern papillary
thyroid carcinoma. Br J Cancer. 112:1938–1943. 2015.PubMed/NCBI View Article : Google Scholar
|
34
|
Guo C, Song WQ, Sun P, Jin L and Dai HY:
lncRNA-GAS5 induces PTEN expression through inhibiting miR-103 in
endometrial cancer cells. J Biomed Sci. 22(100)2015.PubMed/NCBI View Article : Google Scholar
|
35
|
Wang J, Xu W, He Y, Xia Q and Liu S:
lncRNA MEG3 impacts proliferation, invasion, and migration of
ovarian cancer cells through regulating PTEN. Inflamm Res.
67:927–936. 2018.PubMed/NCBI View Article : Google Scholar
|
36
|
Qiao Q and Li H: lncRNA FER1L4 suppresses
cancer cell proliferation and cycle by regulating PTEN expression
in endometrial carcinoma. Biochem Biophys Res Commun. 478:507–512.
2016.PubMed/NCBI View Article : Google Scholar
|