Circadian rhythm and atherosclerosis (Review)
- Authors:
- Zaiqiang Zhang
- Bin Yu
- Xinan Wang
- Caiyun Luo
- Tian Zhou
- Xiaxia Zheng
- Jiawang Ding
-
Affiliations: Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei 443000, P.R. China - Published online on: September 16, 2020 https://doi.org/10.3892/etm.2020.9224
- Article Number: 96
-
Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Shah MS and Brownlee M: Molecular and cellular mechanisms of cardiovascular disorders in diabetes. Circ Res. 118:1808–1829. 2016.PubMed/NCBI View Article : Google Scholar | |
Nguyen KD, Fentress SJ, Qiu Y, Yun K, Cox JS and Chawla A: Circadian gene Bmal1 regulates diurnal oscillations of Ly6C(hi) inflammatory monocytes. Science. 341:1483–1488. 2013.PubMed/NCBI View Article : Google Scholar | |
Scheiermann C, Kunisaki Y and Frenette PS: Circadian control of the immune system. Nat Rev Immunol. 13:190–198. 2013.PubMed/NCBI View Article : Google Scholar | |
Steffens S, Winter C, Schloss MJ, Hidalgo A, Weber C and Soehnlein O: Circadian control of inflammatory processes in atherosclerosis and its complications. Arterioscler Thromb Vasc Biol. 37:1022–1028. 2017.PubMed/NCBI View Article : Google Scholar | |
Mohawk JA, Green CB and Takahashi JS: Central and peripheral circadian clocks in mammals. Annu Rev Neurosci. 35:445–462. 2012.PubMed/NCBI View Article : Google Scholar | |
Lowrey PL, Shimomura K, Antoch MP, Yamazaki S, Zemenides PD, Ralph MR, Menaker M and Takahashi JS: Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau. Science. 288:483–492. 2000.PubMed/NCBI View Article : Google Scholar | |
Shirogane T, Jin J, Ang XL and Harper JW: SCFbeta-TRCP controls clock-dependent transcription via casein kinase 1-dependent degradation of the mammalian period-1 (Per1) protein. J Biol Chem. 280:26863–26872. 2005.PubMed/NCBI View Article : Google Scholar | |
Lamia KA, Sachdeva UM, DiTacchio L, Williams EC, Alvarez JG, Egan DF, Vasquez DS, Juguilon H, Panda S, Shaw RJ, et al: AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science. 326:437–440. 2009.PubMed/NCBI View Article : Google Scholar | |
Buhr ED and Takahashi JS: Molecular components of the Mammalian circadian clock. Handb Exp Pharmacol. 217:3–27. 2013.PubMed/NCBI View Article : Google Scholar | |
Bugge A, Feng D, Everett LJ, Briggs ER, Mullican SE, Wang F, Jager J and Lazar MA: Rev-erbα and Rev-erbβ coordinately protect the circadian clock and normal metabolic function. Genes Dev. 26:657–667. 2012.PubMed/NCBI View Article : Google Scholar | |
Solt LA, Wang Y, Banerjee S, Hughes T, Kojetin DJ, Lundasen T, Shin Y, Liu J, Cameron MD, Noel R, et al: Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists. Nature. 485:62–68. 2012.PubMed/NCBI View Article : Google Scholar | |
Crumbley C and Burris TP: Direct regulation of CLOCK expression by REV-ERB. PLoS One. 6(e17290)2011.PubMed/NCBI View Article : Google Scholar | |
Skogstad M, Mamen A, Lunde LK, Ulvestad B, Matre D, Aass H, Øvstebø R, Nielsen P, Samuelsen KN, Skare Ø and Sirnes PA: Shift work including night work and long working hours in industrial plants increases the risk of atherosclerosis. Int J Environ Res Public Health. 16(521)2019.PubMed/NCBI View Article : Google Scholar | |
Laermans J and Depoortere I: Chronobesity: Role of the circadian system in the obesity epidemic. Obes Rev. 17:108–125. 2016.PubMed/NCBI View Article : Google Scholar | |
O'Keeffe SM, Beynon AL, Davies JS, Moynagh PN and Coogan AN: NF-κB signalling is involved in immune-modulation, but not basal functioning, of the mouse suprachiasmatic circadian clock. Eur J Neurosci. 45:1111–1123. 2017.PubMed/NCBI View Article : Google Scholar | |
Pan X, Jiang XC and Hussain MM: Impaired cholesterol metabolism and enhanced atherosclerosis in clock mutant mice. Circulation. 128:1758–1769. 2013.PubMed/NCBI View Article : Google Scholar | |
Yang L, Chu Y, Wang L, Wang Y, Zhao X, He W, Zhang P, Yang X, Liu X, Tian L, et al: Overexpression of CRY1 protects against the development of atherosclerosis via the TLR/NF-κB pathway. Int Immunopharmacol. 28:525–530. 2015.PubMed/NCBI View Article : Google Scholar | |
Sitaula S, Billon C, Kamenecka TM, Solt LA and Burris TP: Suppression of atherosclerosis by synthetic REV-ERB agonist. Biochem Biophys Res Commun. 460:566–571. 2015.PubMed/NCBI View Article : Google Scholar | |
Kalsbeek A, la Fleur S and Fliers E: Circadian control of glucose metabolism. Mol Metab. 3:372–383. 2014.PubMed/NCBI View Article : Google Scholar | |
Buxton OM, Cain SW, O'Connor SP, Porter JH, Duffy JF, Wang W, Czeisler CA and Shea SA: Adverse metabolic consequences in humans of prolonged sleep restriction combined with circadian disruption. Sci Transl Med. 4(129ra43)2012.PubMed/NCBI View Article : Google Scholar | |
Morris CJ, Yang JN, Garcia JI, Myers S, Bozzi I, Wang W, Buxton OM, Shea SA and Scheer FA: Endogenous circadian system and circadian misalignment impact glucose tolerance via separate mechanisms in humans. Proc Natl Acad Sci USA. 112:E2225–E2234. 2015.PubMed/NCBI View Article : Google Scholar | |
Polonsky KS, Given BD, Hirsch LJ, Tillil H, Shapiro ET, Beebe C, Frank BH, Galloway JA and Van Cauter E: Abnormal patterns of insulin secretion in non-insulin-dependent diabetes mellitus. N Engl J Med. 318:1231–1239. 1988.PubMed/NCBI View Article : Google Scholar | |
Panda S, Antoch MP, Miller BH, Su AI, Schook AB, Straume M, Schultz PG, Kay SA, Takahashi JS and Hogenesch JB: Coordinated transcription of key pathways in the mouse by the circadian clock. Cell. 109:307–320. 2002.PubMed/NCBI View Article : Google Scholar | |
Yang X, Downes M, Yu RT, Bookout AL, He W, Straume M, Mangelsdorf DJ and Evans RM: Nuclear receptor expression links the circadian clock to metabolism. Cell. 126:801–810. 2006.PubMed/NCBI View Article : Google Scholar | |
McCarthy JJ, Andrews JL, McDearmon EL, Campbell KS, Barber BK, Miller BH, Walker JR, Hogenesch JB, Takahashi JS and Esser KA: Identification of the circadian transcriptome in adult mouse skeletal muscle. Physiol Genomics. 31:86–95. 2007.PubMed/NCBI View Article : Google Scholar | |
Shi SQ, Ansari TS, McGuinness OP, Wasserman DH and Johnson CH: Circadian disruption leads to insulin resistance and obesity. Curr Biol. 23:372–381. 2013.PubMed/NCBI View Article : Google Scholar | |
Lee J, Moulik M, Fang Z, Saha P, Zou F, Xu Y, Nelson DL, Ma K, Moore DD and Yechoor VK: Bmal1 and β-cell clock are required for adaptation to circadian disruption, and their loss of function leads to oxidative stress-induced β-cell failure in mice. Mol Cell Biol. 33:2327–2338. 2013.PubMed/NCBI View Article : Google Scholar | |
Coomans CP, van den Berg SA, Lucassen EA, Houben T, Pronk AC, van der Spek RD, Kalsbeek A, Biermasz NR, Willems van Dijk K, Romijn JA and Meijer JH: The suprachiasmatic nucleus controls circadian energy metabolism and hepatic insulin sensitivity. Diabetes. 62:1102–1108. 2013.PubMed/NCBI View Article : Google Scholar | |
Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E, Laposky A, Losee-Olson S, Easton A, Jensen DR, et al: Obesity and metabolic syndrome in circadian Clock mutant mice. Science. 308:1043–1045. 2005.PubMed/NCBI View Article : Google Scholar | |
Rudic RD, McNamara P, Curtis AM, Boston RC, Panda S, Hogenesch JB and Fitzgerald GA: BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol. 2(e377)2004.PubMed/NCBI View Article : Google Scholar | |
Doi R, Oishi K and Ishida N: CLOCK regulates circadian rhythms of hepatic glycogen synthesis through transcriptional activation of Gys2. J Biol Chem. 285:22114–22121. 2010.PubMed/NCBI View Article : Google Scholar | |
Zani F, Breasson L, Becattini B, Vukolic A, Montani JP, Albrecht U, Provenzani A, Ripperger JA and Solinas G: PER2 promotes glucose storage to liver glycogen during feeding and acute fasting by inducing Gys2 PTG and G L expression. Mol Metab. 2:292–305. 2013.PubMed/NCBI View Article : Google Scholar | |
Lamia KA, Papp SJ, Yu RT, Barish GD, Uhlenhaut NH, Jonker JW, Downes M and Evans RM: Cryptochromes mediate rhythmic repression of the glucocorticoid receptor. Nature. 480:552–556. 2011.PubMed/NCBI View Article : Google Scholar | |
Delezie J, Dumont S, Dardente H, Oudart H, Gréchez-Cassiau A, Klosen P, Teboul M, Delaunay F, Pévet P and Challet E: The nuclear receptor REV-ERBα is required for the daily balance of carbohydrate and lipid metabolism. FASEB J. 26:3321–3335. 2012.PubMed/NCBI View Article : Google Scholar | |
Tao H, Li X, Qiu JF, Cui WZ, Sima YH and Xu SQ: Inhibition of expression of the circadian clock gene Period causes metabolic abnormalities including repression of glycometabolism in Bombyx mori cells. Sci Rep. 7(46258)2017.PubMed/NCBI View Article : Google Scholar | |
Chua EC, Shui G, Lee IT, Lau P, Tan LC, Yeo SC, Lam BD, Bulchand S, Summers SA, Puvanendran K, et al: Extensive diversity in circadian regulation of plasma lipids and evidence for different circadian metabolic phenotypes in humans. Proc Natl Acad Sci USA. 110:14468–14473. 2013.PubMed/NCBI View Article : Google Scholar | |
Adamovich Y, Rousso-Noori L, Zwighaft Z, Neufeld-Cohen A, Golik M, Kraut-Cohen J, Wang M, Han X and Asher G: Circadian clocks and feeding time regulate the oscillations and levels of hepatic triglycerides. Cell Metab. 19:319–330. 2014.PubMed/NCBI View Article : Google Scholar | |
Spiegel K, Tasali E, Leproult R and Van Cauter E: Effects of poor and short sleep on glucose metabolism and obesity risk. Nat Rev Endocrinol. 5:253–261. 2009.PubMed/NCBI View Article : Google Scholar | |
Lumeng JC, Somashekar D, Appugliese D, Kaciroti N, Corwyn RF and Bradley RH: Shorter sleep duration is associated with increased risk for being overweight at ages 9 to 12 years. Pediatrics. 120:1020–1029. 2007.PubMed/NCBI View Article : Google Scholar | |
Vieira E, Eg R, Figueroa AL, Aranda G, Momblan D, Carmona F, Gomis R, Vidal J and Hanzu FA: Altered clock gene expression in obese visceral adipose tissue is associated with metabolic syndrome. PLoS One. 9(e111678)2014.PubMed/NCBI View Article : Google Scholar | |
Pan X, Bradfield CA and Hussain MM: Global and hepatocyte-specific ablation of Bmal1 induces hyperlipidaemia and enhances atherosclerosis. Nat Commun. 7(13011)2016.PubMed/NCBI View Article : Google Scholar | |
Takaguri A, Sasano J, Akihiro O and Satoh K: The role of circadian clock gene BMAL1 in vascular proliferation. Eur J Pharmacol. 872(172924)2020.PubMed/NCBI View Article : Google Scholar | |
Jacobi D, Liu S, Burkewitz K, Kory N, Knudsen NH, Alexander RK, Unluturk U, Li X, Kong X, Hyde AL, et al: Hepatic Bmal1 regulates rhythmic mitochondrial dynamics and promotes metabolic Fitness. Cell Metab. 22:709–720. 2015.PubMed/NCBI View Article : Google Scholar | |
Grimaldi B, Bellet MM, Katada S, Astarita G, Hirayama J, Amin RH, Granneman JG, Piomelli D, Leff T and Sassone-Corsi P: PER2 controls lipid metabolism by direct regulation of PPARγ. Cell Metab. 12:509–520. 2010.PubMed/NCBI View Article : Google Scholar | |
Le Martelot G, Claudel T, Gatfield D, Schaad O, Kornmann B, Lo Sasso G, Moschetta A and Schibler U: REV-ERBalpha participates in circadian SREBP signaling and bile acid homeostasis. PLoS Biol. 7(e1000181)2009.PubMed/NCBI View Article : Google Scholar | |
McAlpine CS and Swirski FK: Circadian influence on metabolism and inflammation in atherosclerosis. Circ Res. 119:131–141. 2016.PubMed/NCBI View Article : Google Scholar | |
Davidson AJ, London B, Block GD and Menaker M: Cardiovascular tissues contain independent circadian clocks. Clin Exp Hypertens. 27:307–311. 2005.PubMed/NCBI | |
Tang H, Zhu M, Zhao G, Fu W, Shi Z, Ding Y, Tang X and Guo D: Loss of CLOCK under high glucose upregulates ROCK1-mediated endothelial to mesenchymal transition and aggravates plaque vulnerability. Atherosclerosis. 275:58–67. 2018.PubMed/NCBI View Article : Google Scholar | |
Takeda N, Maemura K, Horie S, Oishi K, Imai Y, Harada T, Saito T, Shiga T, Amiya E, Manabe I, et al: Thrombomodulin is a clock-controlled gene in vascular endothelial cells. J Biol Chem. 282:32561–32567. 2007.PubMed/NCBI View Article : Google Scholar | |
Viswambharan H, Carvas JM, Antic V, Marecic A, Jud C, Zaugg CE, Ming XF, Montani JP, Albrecht U and Yang Z: Mutation of the circadian clock gene Per2 alters vascular endothelial function. Circulation. 115:2188–2195. 2007.PubMed/NCBI View Article : Google Scholar | |
Bellet MM, Deriu E, Liu JZ, Grimaldi B, Blaschitz C, Zeller M, Edwards RA, Sahar S, Dandekar S, Baldi P, et al: Circadian clock regulates the host response to Salmonella. Proc Natl Acad Sci USA. 110:9897–9902. 2013.PubMed/NCBI View Article : Google Scholar | |
Early JO, Menon D, Wyse CA, Cervantes-Silva MP, Zaslona Z, Carroll RG, Palsson-McDermott EM, Angiari S, Ryan DG, Corcoran SE, et al: Circadian clock protein BMAL1 regulates IL-1β in macrophages via NRF2. Proc Natl Acad Sci USA. 115:E8460–E8468. 2018.PubMed/NCBI View Article : Google Scholar | |
Pourcet B, Zecchin M, Ferri L, Beauchamp J, Sitaula S, Billon C, Delhaye S, Vanhoutte J, Mayeuf-Louchart A, Thorel Q, et al: Nuclear receptor subfamily 1 Group D Member 1 regulates circadian activity of NLRP3 inflammasome to reduce the severity of fulminant hepatitis in mice. Gastroenterology. 154:1449–1464.e20. 2018.PubMed/NCBI View Article : Google Scholar | |
Chen L, Wu X, Zeb F, Huang Y, An J, Jiang P, Chen A, Xu C and Feng Q: Acrolein-induced apoptosis of smooth muscle cells through NEAT1-Bmal1/Clock pathway and a protection from asparagus extract. Environ Pollut. 258(113735)2020.PubMed/NCBI View Article : Google Scholar | |
Migita H, Morser J and Kawai K: Rev-Erbalpha upregulates NF-kappaB-responsive genes in vascular smooth muscle cells. FEBS Lett. 561:69–74. 2004.PubMed/NCBI View Article : Google Scholar | |
Rodrigo GC and Herbert KE: Regulation of vascular function and blood pressure by circadian variation in redox signalling. Free Radic Biol Med. 119:115–120. 2018.PubMed/NCBI View Article : Google Scholar | |
Yang Z and Ming XF: Recent advances in understanding endothelial dysfunction in atherosclerosis. Clin Med Res. 4:53–65. 2006.PubMed/NCBI View Article : Google Scholar | |
Maruo T, Nakatani S, Kanzaki H, Kakuchi H, Yamagishi M, Kitakaze M, Ohe T and Miyatake K: Circadian variation of endothelial function in idiopathic dilated cardiomyopathy. Am J Cardiol. 97:699–702. 2006.PubMed/NCBI View Article : Google Scholar | |
Gibbs J, Ince L, Matthews L, Mei J, Bell T, Yang N, Saer B, Begley N, Poolman T, Pariollaud M, et al: An epithelial circadian clock controls pulmonary inflammation and glucocorticoid action. Nat Med. 20:919–926. 2014.PubMed/NCBI View Article : Google Scholar | |
Bhatwadekar AD, Beli E, Diao Y, Chen J, Luo Q, Alex A, Caballero S, Dominguez JM, Salazar TE, Busik JV, et al: Conditional deletion of Bmal1 accentuates microvascular and macrovascular injury. Am J Pathol. 187:1426–1435. 2017.PubMed/NCBI View Article : Google Scholar | |
Gao Y, Meng D, Sun N, Zhu Z, Zhao R, Lu C, Chen S, Hua L and Qian R: Clock upregulates intercellular adhesion molecule-1 expression and promotes mononuclear cells adhesion to endothelial cells. Biochem Biophys Res Commun. 443:586–591. 2014.PubMed/NCBI View Article : Google Scholar | |
Carvas JM, Vukolic A, Yepuri G, Xiong Y, Popp K, Schmutz I, Chappuis S, Albrecht U, Ming XF, Montani JP and Yang Z: Period2 gene mutant mice show compromised insulin-mediated endothelial nitric oxide release and altered glucose homeostasis. Front Physiol. 3(337)2012.PubMed/NCBI View Article : Google Scholar | |
Qin B and Deng Y: Overexpression of circadian clock protein cryptochrome (CRY) 1 alleviates sleep deprivation-induced vascular inflammation in a mouse model. Immunol Lett. 163:76–83. 2015.PubMed/NCBI View Article : Google Scholar | |
Savalli G, Diao W, Schulz S, Todtova K and Pollak DD: Diurnal oscillation of amygdala clock gene expression and loss of synchrony in a mouse model of depression. Int J Neuropsychopharmacol. 18(pyu095)2014.PubMed/NCBI View Article : Google Scholar | |
Lacolley P, Regnault V, Segers P and Laurent S: Vascular smooth muscle cells and arterial stiffening: Relevance in development, aging, and disease. Physiol Rev. 97:1555–1617. 2017.PubMed/NCBI View Article : Google Scholar | |
Feil S, Hofmann F and Feil R: SM22alpha modulates vascular smooth muscle cell phenotype during atherogenesis. Circ Res. 94:863–865. 2004.PubMed/NCBI View Article : Google Scholar | |
Rudolph V and Freeman BA: Cardiovascular consequences when nitric oxide and lipid signaling converge. Circ Res. 105:511–522. 2009.PubMed/NCBI View Article : Google Scholar | |
Wang L, Zheng J, Bai X, Liu B, Liu CJ, Xu Q, Zhu Y, Wang N, Kong W and Wang X: ADAMTS-7 mediates vascular smooth muscle cell migration and neointima formation in balloon-injured rat arteries. Circ Res. 104:688–698. 2009.PubMed/NCBI View Article : Google Scholar | |
Xie Z, Su W, Liu S, Zhao G, Esser K, Schroder EA, Lefta M, Stauss HM, Guo Z and Gong MC: Smooth-muscle BMAL1 participates in blood pressure circadian rhythm regulation. J Clin Invest. 125:324–336. 2015.PubMed/NCBI View Article : Google Scholar | |
Suyama K, Silagi ES, Choi H, Sakabe K, Mochida J, Shapiro IM and Risbud MV: Circadian factors BMAL1 and RORα control HIF-1α transcriptional activity in nucleus pulposus cells: Implications in maintenance of intervertebral disc health. Oncotarget. 7:23056–23071. 2016.PubMed/NCBI View Article : Google Scholar | |
Lin C, Tang X, Zhu Z, Liao X, Zhao R, Fu W, Chen B, Jiang J, Qian R and Guo D: The rhythmic expression of clock genes attenuated in human plaque-derived vascular smooth muscle cells. Lipids Health Dis. 13(14)2014.PubMed/NCBI View Article : Google Scholar | |
Su W, Xie Z, Guo Z, Duncan MJ, Lutshumba J and Gong MC: Altered clock gene expression and vascular smooth muscle diurnal contractile variations in type 2 diabetic db/db mice. Am J Physiol Heart Circ Physiol. 302:H621–H633. 2012.PubMed/NCBI View Article : Google Scholar | |
Chen S, Ding Y, Zhang Z, Wang H and Liu C: Hyperlipidaemia impairs the circadian clock and physiological homeostasis of vascular smooth muscle cells via the suppression of Smarcd1. J Pathol. 233:159–169. 2014.PubMed/NCBI View Article : Google Scholar | |
Keller M, Mazuch J, Abraham U, Eom GD, Herzog ED, Volk HD, Kramer A and Maier B: A circadian clock in macrophages controls inflammatory immune responses. Proc Natl Acad Sci USA. 106:21407–21412. 2009.PubMed/NCBI View Article : Google Scholar | |
Gibbs JE, Blaikley J, Beesley S, Matthews L, Simpson KD, Boyce SH, Farrow SN, Else KJ, Singh D, Ray DW, et al: The nuclear receptor REV-ERBα mediates circadian regulation of innate immunity through selective regulation of inflammatory cytokines. Proc Natl Acad Sci USA. 109:582–587. 2012.PubMed/NCBI View Article : Google Scholar | |
Hayashi M, Shimba S and Tezuka M: Characterization of the molecular clock in mouse peritoneal macrophages. Biol Pharm Bull. 30:621–626. 2007.PubMed/NCBI View Article : Google Scholar | |
Huo M, Huang Y, Qu D, Zhang H, Wong WT, Chawla A, Huang Y and Tian XY: Myeloid Bmal1 deletion increases monocyte recruitment and worsens atherosclerosis. FASEB J. 31:1097–1106. 2017.PubMed/NCBI View Article : Google Scholar | |
Lam MT, Cho H, Lesch HP, Gosselin D, Heinz S, Tanaka-Oishi Y, Benner C, Kaikkonen MU, Kim AS, Kosaka M, et al: Rev-Erbs repress macrophage gene expression by inhibiting enhancer-directed transcription. Nature. 498:511–515. 2013.PubMed/NCBI View Article : Google Scholar | |
Sato S, Sakurai T, Ogasawara J, Takahashi M, Izawa T, Imaizumi K, Taniguchi N, Ohno H and Kizaki T: A circadian clock gene, Rev-erbα, modulates the inflammatory function of macrophages through the negative regulation of Ccl2 expression. J Immunol. 192:407–417. 2014.PubMed/NCBI View Article : Google Scholar | |
Xie M, Tang Q, Nie J, Zhang C, Zhou X, Yu S, Sun J, Cheng X, Dong N, Hu Y and Chen L: BMAL1-downregulation aggravates Porphyromonas gingivalis-induced atherosclerosis by encouraging oxidative stress. Circ Res. 126:e15–e29. 2020.PubMed/NCBI View Article : Google Scholar | |
Lucassen EA, Coomans CP, van Putten M, de Kreij SR, van Genugten JH, Sutorius RP, de Rooij KE, van der Velde M, Verhoeve SL, Smit JW, et al: Environmental 24-hr cycles are essential for health. Curr Biol. 26:1843–1853. 2016.PubMed/NCBI View Article : Google Scholar | |
McAlpine CS, Kiss MG, Rattik S, He S, Vassalli A, Valet C, Anzai A, Chan CT, Mindur JE, Kahles F, et al: Sleep modulates haematopoiesis and protects against atherosclerosis. Nature. 566:383–387. 2019.PubMed/NCBI View Article : Google Scholar | |
Schilperoort M, van den Berg R, Bosmans LA, van Os BW, Dollé M, Smits N, Guichelaar T, van Baarle D, Koemans L, Berbée J, et al: Disruption of circadian rhythm by alternating light-dark cycles aggravates atherosclerosis development in APOE*3-Leiden.CETP mice. J Pineal Res. 68(e12614)2020.PubMed/NCBI View Article : Google Scholar | |
Arjona A and Sarkar DK: The circadian gene mPer2 regulates the daily rhythm of IFN-gamma. J Interferon Cytokine Res. 26:645–649. 2006.PubMed/NCBI View Article : Google Scholar | |
Hashiramoto A, Yamane T, Tsumiyama K, Yoshida K, Komai K, Yamada H, Yamazaki F, Doi M, Okamura H and Shiozawa S: Mammalian clock gene Cryptochrome regulates arthritis via proinflammatory cytokine TNF-alpha. J Immunol. 184:1560–1565. 2010.PubMed/NCBI View Article : Google Scholar | |
Raffatellu M, George MD, Akiyama Y, Hornsby MJ, Nuccio SP, Paixao TA, Butler BP, Chu H, Santos RL, Berger T, et al: Lipocalin-2 resistance confers an advantage to Salmonella enterica serotype Typhimurium for growth and survival in the inflamed intestine. Cell Host Microbe. 5:476–486. 2009.PubMed/NCBI View Article : Google Scholar | |
Yu X, Rollins D, Ruhn KA, Stubblefield JJ, Green CB, Kashiwada M, Rothman PB, Takahashi JS and Hooper LV: TH17 cell differentiation is regulated by the circadian clock. Science. 342:727–730. 2013.PubMed/NCBI View Article : Google Scholar |